Deap: python中的遗传算法工具箱
Overview 程序概覽
官方文檔:http://deap.readthedocs.io/en/master/index.html
1. Types : 選擇你要解決的問(wèn)題類(lèi)型,確定要求解的問(wèn)題個(gè)數(shù),最大值還是最小值
2. Initialization : 初始化基因編碼位數(shù),初始值,等基本信息
3. Operators : 操作,設(shè)計(jì)evaluate函數(shù),在工具箱中注冊(cè)參數(shù)信息:交叉,變異,保留個(gè)體,評(píng)價(jià)函數(shù)
4. Algorithm : 設(shè)計(jì)main函數(shù),確定參數(shù)并運(yùn)行得到結(jié)果
Types
# Types from deap import base, creatorcreator.create("FitnessMin", base.Fitness, weights=(-1.0,)) # weights 1.0, 求最大值,-1.0 求最小值 # (1.0,-1.0,)求第一個(gè)參數(shù)的最大值,求第二個(gè)參數(shù)的最小值 creator.create("Individual", list, fitness=creator.FitnessMin)Initialization
import random from deap import toolsIND_SIZE = 10 # 種群數(shù)toolbox = base.Toolbox() toolbox.register("attribute", random.random) # 調(diào)用randon.random為每一個(gè)基因編碼編碼創(chuàng)建 隨機(jī)初始值 也就是范圍[0,1] toolbox.register("individual", tools.initRepeat, creator.Individual,toolbox.attribute, n=IND_SIZE) toolbox.register("population", tools.initRepeat, list, toolbox.individual)Operators
# Operators # difine evaluate function # Note that a comma is a must def evaluate(individual):return sum(individual),# use tools in deap to creat our application toolbox.register("mate", tools.cxTwoPoint) # mate:交叉 toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1) # mutate : 變異 toolbox.register("select", tools.selTournament, tournsize=3) # select : 選擇保留的最佳個(gè)體 toolbox.register("evaluate", evaluate) # commit our evaluate高斯變異:
這種變異的方法就是,產(chǎn)生一個(gè)服從高斯分布的隨機(jī)數(shù),取代原先基因中的實(shí)數(shù)數(shù)值。這個(gè)算法產(chǎn)生的隨機(jī)數(shù),數(shù)學(xué)期望當(dāng)為當(dāng)前基因的實(shí)數(shù)數(shù)值。
一個(gè)模擬產(chǎn)生的算法是,產(chǎn)生6個(gè)服從U(0,1)的隨機(jī)數(shù),以他們的數(shù)學(xué)期望作為高斯分布隨機(jī)數(shù)的近似。
mutate方法
這個(gè)函數(shù)適用于輸入個(gè)體的平均值和標(biāo)準(zhǔn)差的高斯突變
mu:python中基于平均值的高斯變異
sigma:python中基于標(biāo)準(zhǔn)差的高斯變異
indpb:每個(gè)屬性的獨(dú)立變異概率
mate : 交叉
select : 選擇保留的最佳個(gè)體
evaluate : 選擇評(píng)價(jià)函數(shù),要注意返回值的地方最后面要多加一個(gè)逗號(hào)
Algorithms 計(jì)算程序
也就是設(shè)計(jì)主程序的地方,按照官網(wǎng)給的模式,我們要早此處設(shè)計(jì)其他參數(shù),并設(shè)計(jì)迭代和取值的代碼部分,并返回我們所需要的值.
# Algorithms def main():# create an initial population of 300 individuals (where# each individual is a list of integers)pop = toolbox.population(n=50)CXPB, MUTPB, NGEN = 0.5, 0.2, 40'''# CXPB is the probability with which two individuals# are crossed## MUTPB is the probability for mutating an individual## NGEN is the number of generations for which the# evolution runs'''# Evaluate the entire populationfitnesses = map(toolbox.evaluate, pop)for ind, fit in zip(pop, fitnesses):ind.fitness.values = fitprint(" Evaluated %i individuals" % len(pop)) # 這時(shí)候,pop的長(zhǎng)度還是300呢print("-- Iterative %i times --" % NGEN)for g in range(NGEN):if g % 10 == 0:print("-- Generation %i --" % g)# Select the next generation individualsoffspring = toolbox.select(pop, len(pop))# Clone the selected individualsoffspring = list(map(toolbox.clone, offspring))# Change map to list,The documentation on the official website is wrong# Apply crossover and mutation on the offspringfor child1, child2 in zip(offspring[::2], offspring[1::2]):if random.random() < CXPB:toolbox.mate(child1, child2)del child1.fitness.valuesdel child2.fitness.valuesfor mutant in offspring:if random.random() < MUTPB:toolbox.mutate(mutant)del mutant.fitness.values# Evaluate the individuals with an invalid fitnessinvalid_ind = [ind for ind in offspring if not ind.fitness.valid]fitnesses = map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fit# The population is entirely replaced by the offspringpop[:] = offspringprint("-- End of (successful) evolution --")best_ind = tools.selBest(pop, 1)[0]return best_ind, best_ind.fitness.values # return the result:Last individual,The Return of Evaluate function要注意的地方就是,官網(wǎng)中給出的Overview代碼中有一行代碼是錯(cuò)誤的,需要把一個(gè)數(shù)據(jù)類(lèi)型(map)轉(zhuǎn)換為list.
輸出結(jié)果
Evaluated 50 individuals -- Iterative 40 times -- -- Generation 0 -- -- Generation 10 -- -- Generation 20 -- -- Generation 30 -- -- End of (successful) evolution -- best_ind [-2.402824207878805, -1.5920248739487302, -4.397332290574777, -0.7564815676249151, -3.3478264358788814, -5.900475519316307, -7.739284213710048, -4.469259215914226, 0.35793917907272843, -2.8594709616875256] best_ind.fitness.values (-33.10704010746149,)- best_ind : 最佳個(gè)體
- best_ind.fitness.values : 最佳個(gè)體在經(jīng)過(guò)evaluate之后的輸出
總結(jié)
以上是生活随笔為你收集整理的Deap: python中的遗传算法工具箱的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: sklearn中的Pipline(流水线
- 下一篇: Deap : 遗传算法算法解决 背包问题