ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值
ML之回歸預測:利用兩種機器學習算法(LiR,XGBoost(調優+重要性可視化+特征選擇模型))對無人駕駛汽車系統參數(2017年的data,18+2)進行回歸預測值VS真實值
?
?
?
目錄
輸出結果
1、LiR模型
2、XGBoost模型
?
?
?
?
?
?
輸出結果
1、LiR模型
LiR:The value of default measurement of LiR is 0.8729775261968014
LiR:R-squared value of DecisionTreeRegressor: 0.8729775261968014
?
2、XGBoost模型
ML之XGBoost:XGBoost參數調優之經驗總結——DIY十多個案例
T1、調用XGBR_GSCV_Shuffle()函數,調優+重要性可視化+特征選擇模型
? ? XGBR_model = XGBRegressor( learning_rate=0.06, max_depth= 4, n_estimators=100 ) ? ?#XGBR_GSCV_Shuffle()函數,第一次得到最佳參數組合,輸出準確度: 0.9312586298921468
? ? XGBR_model = XGBRegressor( learning_rate=0.15, max_depth= 4, n_estimators=100 ) ? ?#XGBR_GSCV_Shuffle()函數,第二次得到最佳參數組合,輸出準確度: 0.9361222829659452
?
? ? XGBR_model = XGBRegressor( learning_rate=0.03, max_depth= 5, n_estimators=200 ) ? ?#XGBR_GSCV_Shuffle()函數,第三次得到最佳參數組合,輸出準確度: 0.9335316602435876
?
T2、調用XGBR_GSCV_Time()函數,調優+重要性可視化+特征選擇模型
? ? XGBR_model = XGBRegressor( learning_rate=0.2, max_depth= 2, n_estimators=100 ) ? ? #XGBR_GSCV_Time()函數,第一次得到最佳參數組合,輸出準確度: 0.929254087319193
Best: 0.8637 using {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 100} XGBR_GSCV_Time score: 0.92951600308978 -53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 50} -53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 100} -52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 200} -49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 400} -53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 50} -53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 100} -52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 200} -49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 400} -53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 50} -53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 100} -52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 200} -49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 400} -53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 50} -53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 100} -52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 200} -49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 400} -48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 50} -44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 100} -36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 200} -23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 400} -48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 50} -44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 100} -36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 200} -23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 400} -48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 50} -44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 100} -36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 200} -23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 400} -48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 50} -44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 100} -36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 200} -23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 400} -19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 50} -6.744672 (0.933997) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 100} -0.216053 (0.050337) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 200} 0.848897 (0.024814) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 400} -19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 50} -6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 100} -0.254126 (0.091086) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 200} 0.831512 (0.008093) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 400} -19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 50} -6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 100} -0.260028 (0.093910) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 200} 0.829355 (0.015182) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 400} -19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 50} -6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 100} -0.258236 (0.092933) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 200} 0.831777 (0.028036) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 400} 0.852283 (0.003829) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 50} 0.813154 (0.046960) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 100} 0.829779 (0.037321) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 200} 0.832717 (0.031505) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 400} 0.785207 (0.061920) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 50} 0.757671 (0.097880) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 100} 0.772923 (0.083151) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200} 0.777985 (0.077499) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 400} 0.800020 (0.031554) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 50} 0.722744 (0.115322) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 100} 0.718966 (0.120953) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 200} 0.716761 (0.123083) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 400} 0.816402 (0.004015) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 50} 0.766141 (0.059941) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 100} 0.756297 (0.069550) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 200} 0.755626 (0.070178) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 400} 0.855146 (0.003964) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 50} 0.863665 (0.002430) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 100} 0.862916 (0.000224) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 200} 0.849430 (0.007344) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 400} 0.758113 (0.097414) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 50} 0.759158 (0.098429) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 100} 0.754193 (0.102434) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 200} 0.748421 (0.107894) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 400} 0.780980 (0.061204) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 50} 0.773959 (0.067553) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 100} 0.773742 (0.067638) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 200} 0.773425 (0.067856) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 400} 0.804540 (0.032247) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 50} 0.800325 (0.036309) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 100} 0.800133 (0.036625) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 200} 0.800134 (0.036625) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 400} 0.804575 (0.055743) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 50} 0.823723 (0.042951) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 100} 0.832058 (0.027793) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 200} 0.824320 (0.028952) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 400} 0.684716 (0.174854) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 50} 0.683423 (0.176741) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 100} 0.676494 (0.183628) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 200} 0.676418 (0.183173) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 400} 0.533161 (0.294224) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 50} 0.520398 (0.307576) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100} 0.520455 (0.307122) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 200} 0.520411 (0.307169) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 400} 0.666960 (0.156246) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 50} 0.668800 (0.154254) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 100} 0.668832 (0.154209) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 200} 0.668832 (0.154209) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 400} XGBR_GSCV_Time_time: 61.41017997421118?
?
?
?
總結
以上是生活随笔為你收集整理的ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Dataset之DA:数据增强(Data
- 下一篇: AI英特尔杯公开课:2019.06.27