ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测
ML之回歸預測:利用多個算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)對國內某平臺上海2020年6月份房價數據集【12+1】進行回歸預測(包括特征工程和單參數調參)
?
?
?
?
目錄
利用多個算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)對對國內某平臺上海2020年6月份房價數據集【12+1】進行回歸預測(包括特征工程)
1、LassoR
2、KernelRidgeR
3、ElasticNetR
4、GBR
5、LGBMR
6、XGBR
?
?
相關文章
ML之FE:利用【數據分析+數據處理】算法對國內某平臺上海2020年6月份房價數據集【12+1】進行特征工程處理(史上最完整,建議收藏)
ML之FE:利用【數據分析+數據處理】算法對國內某平臺上海2020年6月份房價數據集【12+1】進行特征工程處理實現
ML之FE:利用【數據分析+數據處理】算法對國內某平臺上海2020年6月份房價數據集【12+1】進行特征工程處理(史上最完整,建議收藏)——附錄
ML之FE:利用【數據分析+數據處理】算法對國內某平臺上海2020年6月份房價數據集【12+1】進行特征工程處理實現
ML之回歸預測:利用多個算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)對國內某平臺上海2020年6月份房價數據集【12+1】進行回歸預測
ML之回歸預測:利用多個算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)對國內某平臺上海2020年6月份房價數據集【12+1】進行回歸預測實現
利用多個算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)對對國內某平臺上海2020年6月份房價數據集【12+1】進行回歸預測(包括特征工程)
1、LassoR
LassoR-0.5 Score value: -0.0005055552395767382 LassoR-0.5 R2 value: -0.0005055552395767382 LassoR-0.5 MAE value: 0.09939996261234317 LassoR-0.5 MSE value: 0.015779522350425033LassoR-0.05 Score value: 0.5022404879755265 LassoR-0.05 R2 value: 0.5022404879755265 LassoR-0.05 MAE value: 0.07037495216160995 LassoR-0.05 MSE value: 0.007850438514802703LassoR-0.01 Score value: 0.9688284646643495 LassoR-0.01 R2 value: 0.9688284646643495 LassoR-0.01 MAE value: 0.017225365757314693 LassoR-0.01 MSE value: 0.0004916233957423449LassoR-0.005 Score value: 0.9837696043172183 LassoR-0.005 R2 value: 0.9837696043172183 LassoR-0.005 MAE value: 0.012281723604764734 LassoR-0.005 MSE value: 0.0002559784801708263LassoR-0.001 Score value: 0.9898771362261237 LassoR-0.001 R2 value: 0.9898771362261237 LassoR-0.001 MAE value: 0.009067394814047579 LassoR-0.001 MSE value: 0.00015965324163736406LassoR-0.0001 Score value: 0.9942215817581104 LassoR-0.0001 R2 value: 0.9942215817581104 LassoR-0.0001 MAE value: 0.0067102545940495514 LassoR-0.0001 MSE value: 9.113460622032017e-05[-0.0005055552395767382, 0.5022404879755265, 0.9688284646643495, 0.9837696043172183, 0.9898771362261237, 0.9942215817581104]?
?
2、KernelRidgeR
KernelRidgeR-0.5 Score value: 0.9544414613254653 KernelRidgeR-0.5 R2 value: 0.9544414613254653 KernelRidgeR-0.5 MAE value: 0.020348726878028075 KernelRidgeR-0.5 MSE value: 0.0007185287233066692KernelRidgeR-0.05 Score value: 0.992221974943464 KernelRidgeR-0.05 R2 value: 0.992221974943464 KernelRidgeR-0.05 MAE value: 0.008029713794101924 KernelRidgeR-0.05 MSE value: 0.00012267150300068682KernelRidgeR-0.01 Score value: 0.9953080928564902 KernelRidgeR-0.01 R2 value: 0.9953080928564902 KernelRidgeR-0.01 MAE value: 0.006042556218634196 KernelRidgeR-0.01 MSE value: 7.3998643235321e-05KernelRidgeR-0.005 Score value: 0.9961880311177832 KernelRidgeR-0.005 R2 value: 0.9961880311177832 KernelRidgeR-0.005 MAE value: 0.005338518159253265 KernelRidgeR-0.005 MSE value: 6.012065386449663e-05KernelRidgeR-0.001 Score value: 0.9973841188580002 KernelRidgeR-0.001 R2 value: 0.9973841188580002 KernelRidgeR-0.001 MAE value: 0.004183983328177061 KernelRidgeR-0.001 MSE value: 4.125649750775996e-05KernelRidgeR-0.0001 Score value: 0.9977701958859504 KernelRidgeR-0.0001 R2 value: 0.9977701958859504 KernelRidgeR-0.0001 MAE value: 0.0036901575950436236 KernelRidgeR-0.0001 MSE value: 3.516746475864464e-05[0.9544414613254653, 0.992221974943464, 0.9953080928564902, 0.9961880311177832, 0.9973841188580002, 0.9977701958859504]?
?
3、ElasticNetR
ElasticNetR-0.5 Score value: -0.0005308426992141069 ElasticNetR-0.5 R2 value: -0.0005308426992141069 ElasticNetR-0.5 MAE value: 0.09940889668350568 ElasticNetR-0.5 MSE value: 0.015779921172832806ElasticNetR-0.05 Score value: 0.5909997356551588 ElasticNetR-0.05 R2 value: 0.5909997356551588 ElasticNetR-0.05 MAE value: 0.06384977771594441 ElasticNetR-0.05 MSE value: 0.006450567694263088ElasticNetR-0.01 Score value: 0.9722470175744828 ElasticNetR-0.01 R2 value: 0.9722470175744828 ElasticNetR-0.01 MAE value: 0.01621461543934733 ElasticNetR-0.01 MSE value: 0.00043770752114368465ElasticNetR-0.005 Score value: 0.9846441765684218 ElasticNetR-0.005 R2 value: 0.9846441765684218 ElasticNetR-0.005 MAE value: 0.01189698639426006 ElasticNetR-0.005 MSE value: 0.00024218512109085247ElasticNetR-0.001 Score value: 0.9902182047362088 ElasticNetR-0.001 R2 value: 0.9902182047362088 ElasticNetR-0.001 MAE value: 0.00886838381299399 ElasticNetR-0.001 MSE value: 0.00015427406293142925ElasticNetR-0.0001 Score value: 0.9942704213728978 ElasticNetR-0.0001 R2 value: 0.9942704213728978 ElasticNetR-0.0001 MAE value: 0.006695706278914398 ElasticNetR-0.0001 MSE value: 9.036432984445262e-05[-0.0005308426992141069, 0.5909997356551588, 0.9722470175744828, 0.9846441765684218, 0.9902182047362088, 0.9942704213728978]?
4、GBR
GBR-1 GBR-1 Score value: 0.9763666115566574 GBR-1 R2 value: 0.9763666115566574 GBR-1 MAE value: 0.012052516368497329 GBR-1 MSE value: 0.00037273514295350755GBR-2 GBR-2 Score value: 0.9926847727617255 GBR-2 R2 value: 0.9926847727617255 GBR-2 MAE value: 0.008012779193494083 GBR-2 MSE value: 0.0001153724645508341GBR-3 GBR-3 Score value: 0.9958318342325574 GBR-3 R2 value: 0.9958318342325574 GBR-3 MAE value: 0.005714597302721484 GBR-3 MSE value: 6.573843047966691e-05GBR-4 GBR-4 Score value: 0.9958185134836749 GBR-4 R2 value: 0.9958185134836749 GBR-4 MAE value: 0.004795477929089135 GBR-4 MSE value: 6.594851932286696e-05GBR-5 GBR-5 Score value: 0.9936308502387022 GBR-5 R2 value: 0.9936308502387022 GBR-5 MAE value: 0.004648655284013917 GBR-5 MSE value: 0.00010045135730159553GBR-6 GBR-6 Score value: 0.9928564661943613 GBR-6 R2 value: 0.9928564661943613 GBR-6 MAE value: 0.004401292926689321 GBR-6 MSE value: 0.00011266459317169972GBR-7 GBR-7 Score value: 0.9902977868325656 GBR-7 R2 value: 0.9902977868325656 GBR-7 MAE value: 0.004428399093689221 GBR-7 MSE value: 0.0001530189300023011GBR-8 GBR-8 Score value: 0.9869749160018195 GBR-8 R2 value: 0.9869749160018195 GBR-8 MAE value: 0.004718971897735163 GBR-8 MSE value: 0.00020542575000119555GBR-9 GBR-9 Score value: 0.9853247317034755 GBR-9 R2 value: 0.9853247317034755 GBR-9 MAE value: 0.0050509572638206945 GBR-9 MSE value: 0.00023145171245755048GBR-10 GBR-10 Score value: 0.9838819868698998 GBR-10 R2 value: 0.9838819868698998 GBR-10 MAE value: 0.005661280988227483 GBR-10 MSE value: 0.000254206033238824GBR-11 GBR-11 Score value: 0.9830335256911121 GBR-11 R2 value: 0.9830335256911121 GBR-11 MAE value: 0.006145980498176065 GBR-11 MSE value: 0.0002675875802617618[0.9763666115566574, 0.9926847727617255, 0.9958318342325574, 0.9958185134836749, 0.9936308502387022, 0.9928564661943613, 0.9902977868325656, 0.9869749160018195, 0.9853247317034755, 0.9838819868698998, 0.9830335256911121]?
5、LGBMR
?
LGBMR-0.001 LGBMR-0.001 Score value: 0.16876197122096692 LGBMR-0.001 R2 value: 0.16876197122096692 LGBMR-0.001 MAE value: 0.09046580583395379 LGBMR-0.001 MSE value: 0.013109911269309412LGBMR-0.005 LGBMR-0.005 Score value: 0.600585544258686 LGBMR-0.005 R2 value: 0.600585544258686 LGBMR-0.005 MAE value: 0.062265161731615705 LGBMR-0.005 MSE value: 0.006299384644539756LGBMR-0.01 LGBMR-0.01 Score value: 0.8337825446742081 LGBMR-0.01 R2 value: 0.8337825446742081 LGBMR-0.01 MAE value: 0.0391266729122725 LGBMR-0.01 MSE value: 0.0026215067348787035LGBMR-0.05 LGBMR-0.05 Score value: 0.9913041321780923 LGBMR-0.05 R2 value: 0.9913041321780923 LGBMR-0.05 MAE value: 0.005162800605481635 LGBMR-0.05 MSE value: 0.0001371473051134398LGBMR-0.1 LGBMR-0.1 Score value: 0.9930306170725406 LGBMR-0.1 R2 value: 0.9930306170725406 LGBMR-0.1 MAE value: 0.004702627111296393 LGBMR-0.1 MSE value: 0.00010991796406985765LGBMR-0.3 LGBMR-0.3 Score value: 0.9943329790691453 LGBMR-0.3 R2 value: 0.9943329790691453 LGBMR-0.3 MAE value: 0.004947701938557634 LGBMR-0.3 MSE value: 8.937769807518515e-05LGBMR-0.5 LGBMR-0.5 Score value: 0.9923225863703856 LGBMR-0.5 R2 value: 0.9923225863703856 LGBMR-0.5 MAE value: 0.006078772753272445 LGBMR-0.5 MSE value: 0.00012108470495493492LGBMR-0.8 LGBMR-0.8 Score value: 0.9850122706624084 LGBMR-0.8 R2 value: 0.9850122706624084 LGBMR-0.8 MAE value: 0.008351662282985653 LGBMR-0.8 MSE value: 0.00023637970706521245[0.16876197122096692, 0.600585544258686, 0.8337825446742081, 0.9913041321780923, 0.9930306170725406, 0.9943329790691453, 0.9923225863703856, 0.9850122706624084]?
6、XGBR
XGBR-0.001 XGBR-0.001 Score value: -166.74203034694682 XGBR-0.001 R2 value: -166.74203034694682 XGBR-0.001 MAE value: 1.6222131885073523 XGBR-0.001 MSE value: 2.6455516444698888XGBR-0.005 XGBR-0.005 Score value: -74.51589484580421 XGBR-0.005 R2 value: -74.51589484580421 XGBR-0.005 MAE value: 1.0873952054959475 XGBR-0.005 MSE value: 1.1910026329102963XGBR-0.01 XGBR-0.01 Score value: -26.747645189967315 XGBR-0.01 R2 value: -26.747645189967315 XGBR-0.01 MAE value: 0.6580440584800581 XGBR-0.01 MSE value: 0.43762334467189284XGBR-0.05 XGBR-0.05 Score value: 0.9828950831664092 XGBR-0.05 R2 value: 0.9828950831664092 XGBR-0.05 MAE value: 0.013051145715410249 XGBR-0.05 MSE value: 0.0002697710333184286XGBR-0.1 XGBR-0.1 Score value: 0.9957552489177933 XGBR-0.1 R2 value: 0.9957552489177933 XGBR-0.1 MAE value: 0.006227088292841316 XGBR-0.1 MSE value: 6.694629952117871e-05XGBR-0.3 XGBR-0.3 Score value: 0.9921237303622439 XGBR-0.3 R2 value: 0.9921237303622439 XGBR-0.3 MAE value: 0.008735198405534918 XGBR-0.3 MSE value: 0.00012422097222357384[-166.74203034694682, -74.51589484580421, -26.747645189967315, 0.9828950831664092, 0.9957552489177933, 0.9921237303622439]?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
總結
以上是生活随笔為你收集整理的ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ML之FE:利用【数据分析+数据处理】算
- 下一篇: ML之回归预测:利用Lasso、Elas