机器学习之各种算法
根據(jù)算法的功能和形式的類似性,我們可以把算法分類,比如說基于樹的算法,基于神經(jīng)網(wǎng)絡(luò)的算法等等。當(dāng)然,機(jī)器學(xué)習(xí)的范圍非常龐大,有些算法很難明確歸類到某一類。而對于有些分類來說,同一分類的算法可以針對不同類型的問題。這里,我們盡量把常用的算法按照最容易理解的方式進(jìn)行分類。
(1)回歸算法:
?
回歸算法是試圖采用對誤差的衡量來探索變量之間的關(guān)系的一類算法。回歸算法是統(tǒng)計機(jī)器學(xué)習(xí)的利器。在機(jī)器學(xué)習(xí)領(lǐng)域,人們說起回歸,有時候是指一類問題,有時候是指一類算法,這一點常常會使初學(xué)者有所困惑。常見的回歸算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應(yīng)回歸樣條(Multivariate Adaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing)。
(2)基于實例的算法
?
基于實例的算法常常用來對決策問題建立模型,這樣的模型常常先選取一批樣本數(shù)據(jù),然后根據(jù)某些近似性把新數(shù)據(jù)與樣本數(shù)據(jù)進(jìn)行比較。通過這種方式來尋找最佳的匹配。因此,基于實例的算法常常也被稱為“贏家通吃”學(xué)習(xí)或者“基于記憶的學(xué)習(xí)”。常見的算法包括 k-Nearest Neighbor(KNN), 學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ),以及自組織映射算法(Self-Organizing Map , SOM)。
(3)正則化方法
正則化方法是其他算法(通常是回歸算法)的延伸,根據(jù)算法的復(fù)雜度對算法進(jìn)行調(diào)整。正則化方法通常對簡單模型予以獎勵而對復(fù)雜算法予以懲罰。常見的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網(wǎng)絡(luò)(Elastic Net)。
(4)決策樹學(xué)習(xí)
決策樹算法根據(jù)數(shù)據(jù)的屬性采用樹狀結(jié)構(gòu)建立決策模型, 決策樹模型常常用來解決分類和回歸問題。常見的算法包括:分類及回歸樹(Classification And Regression Tree, CART), ID3?(Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機(jī)森林(Random Forest), 多元自適應(yīng)回歸樣條(MARS)以及梯度推進(jìn)機(jī)(Gradient Boosting Machine, GBM)。
(5)貝葉斯方法
?
貝葉斯方法算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。常見算法包括:樸素貝葉斯算法,平均單依賴估計(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。
?(6)基于核的算法
基于核的算法中最著名的莫過于支持向量機(jī)(SVM)了。 基于核的算法把輸入數(shù)據(jù)映射到一個高階的向量空間, 在這些高階向量空間里, 有些分類或者回歸問題能夠更容易的解決。 常見的基于核的算法包括:支持向量機(jī)(Support Vector Machine, SVM), 徑向基函數(shù)(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等。
(7)聚類算法
?聚類,就像回歸一樣,有時候人們描述的是一類問題,有時候描述的是一類算法。聚類算法通常按照中心點或者分層的方式對輸入數(shù)據(jù)進(jìn)行歸并。所以的聚類算法都試圖找到數(shù)據(jù)的內(nèi)在結(jié)構(gòu),以便按照最大的共同點將數(shù)據(jù)進(jìn)行歸類。常見的聚類算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。
(8)關(guān)聯(lián)規(guī)則學(xué)習(xí)
關(guān)聯(lián)規(guī)則學(xué)習(xí)通過尋找最能夠解釋數(shù)據(jù)變量之間關(guān)系的規(guī)則,來找出大量多元數(shù)據(jù)集中有用的關(guān)聯(lián)規(guī)則。常見算法包括 Apriori算法和Eclat算法等。
(9)人工神經(jīng)網(wǎng)絡(luò)
人工神經(jīng)網(wǎng)絡(luò)算法模擬生物神經(jīng)網(wǎng)絡(luò),是一類模式匹配算法。通常用于解決分類和回歸問題。人工神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)的一個龐大的分支,有幾百種不同的算法。(其中深度學(xué)習(xí)就是其中的一類算法,我們會單獨討論),重要的人工神經(jīng)網(wǎng)絡(luò)算法包括:感知器神經(jīng)網(wǎng)絡(luò)(Perceptron Neural Network), 反向傳遞(Back Propagation), Hopfield網(wǎng)絡(luò),自組織映射(Self-Organizing Map, SOM)。學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ)
(10)深度學(xué)習(xí)
出處:http://blog.csdn.net/u013476464/article/details/39639373
總結(jié)
- 上一篇: 几个机器学习算法及应用领域相关的中国大牛
- 下一篇: Deep Learning源代码收集-持