顺序表应用8:最大子段和之动态规划法
生活随笔
收集整理的這篇文章主要介紹了
顺序表应用8:最大子段和之动态规划法
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Description
給定n(1<=n<=100000)個整數(可能為負數)組成的序列a[1],a[2],a[3],…,a[n],求該序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。當所給的整數均為負數時定義子段和為0,依此定義,所求的最優值為: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,當(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)時,最大子段和為20。
注意:本題目要求用動態規劃法求解,只需要輸出最大子段和的值。
Input
第一行輸入整數n(1<=n<=100000),表示整數序列中的數據元素個數;
第二行依次輸入n個整數,對應順序表中存放的每個數據元素值。
Output
輸出所求的最大子段和
Sample
Input
6
-2 11 -4 13 -5 -2
Output
20
總結
以上是生活随笔為你收集整理的顺序表应用8:最大子段和之动态规划法的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: sdutoj-3837-素数链表
- 下一篇: 顺序表应用7:最大子段和之分治递归法