大学python笔记_Introduction to Python课程笔记
首先恭喜自己終于通過了DATACAMP的第一個課程Introduction to Python,
課程講義也上傳到了百度云里,鏈接7天有效,需要的小伙伴們請?zhí)崆氨4妗?/p>
提取碼:0hr3
該課程主要分為四個章節(jié):
Python Basics
Python Lists
Functions and Packages
NumPy
卡的比較久的幾個代碼主要是在沒看清題目,又或者網(wǎng)絡不好導致視頻沒仔細看,直接刷題。
重點如下:python區(qū)分大小寫
變量不可以數(shù)字開頭
python數(shù)據(jù)選取從0開始
[including:excluding]左閉右開,即最左邊的區(qū)間選取,右邊的區(qū)間不選取
python 不支持直接對list進行運算,所以需要用到np.array數(shù)組對列表數(shù)據(jù)進行運算。
即標準的列表list[1,2,3]+list[1,2,3]=list[1,2,3,1,2,3],而numpy中的列表可以通過運算符進行數(shù)學運算np_list[1,2,3]+np_list[1,2,3]=np_list[2,4,6]
因此多數(shù)列表操作使用要調用numpy數(shù)組,比如np.mean(),np.median()
2維列表2dnumpyarray,即list of list 中的數(shù)據(jù)選取規(guī)則如下,逗號分隔,:代表全選
data[:,0]標識第一列全選,data[0,:]標識第一行全選
部分通過代碼如下:
List操作方法
# string to experiment with: place
?
place = "poolhouse"
?
# Use upper() on place: place_up
?
place_up=place.upper()
?
# Print out place and place_up
?
print(place,place_up)
?
# Print out the number of o's in place
?
print(place.count('o'))
list.append()一次只能添加一個元素
import math
math.pi即為常數(shù)π
也可以只加載包中的一個函數(shù)使得運行更快。
from math import pi
一般會用ticks 縮寫包名,
如import numpy as np
由于python不支持列的操作,所以一般用numpy包來對列表(數(shù)組)進行運算。
python的列表進行+運算會相連
Numpy的列表進行+運算會求和
可以使用np.array(list)來得到一個numpy列表。
# Create list baseball
baseball = [180, 215, 210, 210, 188, 176, 209, 200]
?
# Import the numpy package as np
import numpy as np
?
# Create a numpy array from baseball: np_baseball
np_baseball=np.array(baseball)
?
# Print out type of np_baseball
print(type(np_baseball))
# height is available as a regular list
?
# Import numpy
import numpy as np
?
# Create a numpy array from height_in: np_height_in
np_height_in=np.array(height_in)
?
# Print out np_height_in
print(np_height_in)
?
# Convert np_height_in to m: np_height_m
np_height_m=np_height_in*0.0254
?
# Print np_height_m
print(np_height_m)
# height and weight are available as regular lists
?
# Import numpy
import numpy as np
?
# Create array from height_in with metric units: np_height_m
np_height_m=np.array(height_in)*0.0254
?
# Create array from weight_lb with metric units: np_weight_kg
np_weight_kg=np.array(weight_lb)*0.453592
?
# Calculate the BMI: bmi
bmi=np_weight_kg/(np_height_m**2)
?
# Print out bmi
print(bmi)
選取列表元素
# height and weight are available as a regular lists
?
# Import numpy
import numpy as np
?
# Calculate the BMI: bmi
np_height_m = np.array(height_in) * 0.0254
np_weight_kg = np.array(weight_lb) * 0.453592
bmi = np_weight_kg / np_height_m ** 2
?
# Create the light array
light=bmi<21
?
# Print out light
print(light)
?
# Print out BMIs of all baseball players whose BMI is below 21
print(bmi[light])
# height and weight are available as a regular lists
?
# Import numpy
import numpy as np
?
# Store weight and height lists as numpy arrays
np_weight_lb = np.array(weight_lb)
np_height_in = np.array(height_in)
?
# Print out the weight at index 50
print(weight_lb[50])
?
# Print out sub-array of np_height_in: index 100 up to and including index 110
print(np_height_in[100:111])
2d numpy arrays 可以看做List of list,最多可以有7維的列表
數(shù)據(jù)選取類似R語言中的DATAFRAME,都可以通過逗號分隔來選取,但是需要加 :
# Create baseball, a list of lists
baseball = [[180, 78.4],
[215, 102.7],
[210, 98.5],
[188, 75.2]]
?
# Import numpy
import numpy as np
?
# Create a 2D numpy array from baseball: np_baseball
np_baseball=np.array(baseball)
?
# Print out the type of np_baseball
print(type(np_baseball))
?
# Print out the shape of np_baseball
print(np_baseball.shape)
# baseball is available as a regular list of lists
?
# Import numpy package
import numpy as np
?
# Create np_baseball (2 cols)
np_baseball = np.array(baseball)
?
# Print out the 50th row of np_baseball
print(np_baseball[49,:])
?
# Select the entire second column of np_baseball: np_weight_lb
np_weight_lb=np_baseball[:,1]
?
# Print out height of 124th player
print(np_baseball[0:124,1])You managed to get hold of the changes in height, weight and age of all baseball players. It is available as a 2D numpy array, updated. Add np_baseball and updated and print out the result.
You want to convert the units of height and weight to metric (meters and kilograms respectively). As a first step, create a numpy array with three values: 0.0254, 0.453592 and 1. Name this array conversion.
Multiply np_baseball with conversion and print out the result.
# baseball is available as a regular list of lists
# updated is available as 2D numpy array
# Import numpy package
import numpy as np
# Create np_baseball (3 cols)
np_baseball = np.array(baseball)
# Print out addition of np_baseball and updated
print(np_baseball+updated)
# Create numpy array: conversion
conversion=np.array([0.0254,0.453592,1])
# Print out product of np_baseball and conversion
print(np_baseball*conversion)
# np_baseball is available
?
# Import numpy
import numpy as np
?
# Create np_height_in from np_baseball
np_height_in=np_baseball[:,0]
?
# Print out the mean of np_height_in
print(np.mean(np_height_in))
?
# Print out the median of np_height_in
print(np.median(np_height_in))
# np_baseball is available
?
# Import numpy
import numpy as np
?
# Print mean height (first column)
avg = np.mean(np_baseball[:,0])
print("Average: " + str(avg))
?
# Print median height. Replace 'None'
med = np.median(np_baseball[:,0])
print("Median: " + str(med))
?
# Print out the standard deviation on height. Replace 'None'
stddev = np.std(np_baseball[:,0])
print("Standard Deviation: " + str(stddev))
?
# Print out correlation between first and second column. Replace 'None'
corr = np.corrcoef(np_baseball[:,0],np_baseball[:,1])
print("Correlation: " + str(corr))
nparray選取子集
# heights and positions are available as lists
?
# Import numpy
import numpy as np
?
# Convert positions and heights to numpy arrays: np_positions, np_heights
np_heights=np.array(heights)
np_positions=np.array(positions)
?
?
# Heights of the goalkeepers: gk_heights
gk_heights=np_heights[np_positions=="GK"]
?
# Heights of the other players: other_heights
other_heights=np_heights[np_positions!="GK"]
?
?
# Print out the median height of goalkeepers. Replace 'None'
print("Median height of goalkeepers: " + str(np.median(gk_heights)))
?
# Print out the median height of other players. Replace 'None'
print("Median height of other players: " + str(np.median(other_heights)))
總結
以上是生活随笔為你收集整理的大学python笔记_Introduction to Python课程笔记的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python实验过程心得体会_20192
- 下一篇: python操作json_Python学