从flink-example分析flink组件(1)WordCount batch实战及源码分析
上一章<windows下flink示例程序的執行> 簡單介紹了一下flink在windows下如何通過flink-webui運行已經打包完成的示例程序(jar),那么我們為什么要使用flink呢?
flink的特征
官網給出的特征如下:
1、一切皆為流(All streaming use cases )
- 事件驅動應用(Event-driven Applications)
? ? ? ? ? ? ??
- 流式 & 批量分析(Stream & Batch Analytics)
?
- ?數據管道&ETL(Data Pipelines & ETL)
?
?
2、正確性保證(Guaranteed correctness)
- 唯一狀態一致性(Exactly-once state consistency)
- 事件-事件處理(Event-time processing)
- 高超的最近數據處理(Sophisticated late data handling)
3、多層api(Layered APIs)? ?
- 基于流式和批量數據處理的SQL(SQL on Stream & Batch Data)
- 流水數據API & 數據集API(DataStream API & DataSet API)
- 處理函數 (時間 & 狀態)(ProcessFunction (Time & State))
? ? ? ? ? ?
4、易用性
- 部署靈活(Flexible deployment)
- 高可用安裝(High-availability setup)
- 保存點(Savepoints)
5、可擴展性
- 可擴展架構(Scale-out architecture)
- 大量狀態的支持(Support for very large state)
- 增量檢查點(Incremental checkpointing)
6、高性能
- 低延遲(Low latency)
- 高吞吐量(High throughput)
- 內存計算(In-Memory computing)
flink架構?
1、層級結構
?
2.工作架構圖
?
?flink實戰
1、依賴文件pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>flinkDemo</groupId><artifactId>flinkDemo</artifactId><version>1.0-SNAPSHOT</version><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.5.0</version><!--<scope>provided</scope>--></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.11</artifactId><version>1.5.0</version><!--<scope>provided</scope>--></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.10 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka-0.10_2.11</artifactId><version>1.5.0</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-hbase --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-hbase_2.11</artifactId><version>1.5.0</version></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>0.10.1.1</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-client</artifactId><version>1.1.2</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.16.10</version><scope>compile</scope></dependency><dependency><groupId>com.google.code.gson</groupId><artifactId>gson</artifactId><version>2.8.2</version></dependency><dependency><groupId>com.github.rholder</groupId><artifactId>guava-retrying</artifactId><version>2.0.0</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.5.1</version><configuration><source>1.8</source><target>1.8</target></configuration></plugin></plugins></build> </project>2、java程序
public class WordCountDemo {public static void main(String[] args) throws Exception {final ParameterTool params = ParameterTool.fromArgs(args);// create execution environmentfinal ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();env.getConfig().setGlobalJobParameters(params);// get input dataDataSet<String> text;if (params.has("input")) {// read the text file from given input pathtext = env.readTextFile(params.get("input"));} else {// get default test text dataSystem.out.println("Executing WordCount example with default input data set.");System.out.println("Use --input to specify file input.");text = WordCountData.getDefaultTextLineDataSet(env);}DataSet<Tuple2<String, Integer>> counts =// split up the lines in pairs (2-tuples) containing: (word,1)text.flatMap(new Tokenizer())// group by the tuple field "0" and sum up tuple field "1".groupBy(0).sum(1);// emit resultif (params.has("output")) {counts.writeAsCsv(params.get("output"), "\n", " ");// execute programenv.execute("WordCount Example");} else {System.out.println("Printing result to stdout. Use --output to specify output path.");counts.print();}}// *************************************************************************// USER FUNCTIONS// *************************************************************************/*** Implements the string tokenizer that splits sentences into words as a user-defined* FlatMapFunction. The function takes a line (String) and splits it into* multiple pairs in the form of "(word,1)" ({@code Tuple2<String, Integer>}).*/public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) {// normalize and split the lineString[] tokens = value.toLowerCase().split("\\W+");// emit the pairsfor (String token : tokens) {if (token.length() > 0) {out.collect(new Tuple2<>(token, 1));}}}} }3、單步調試分析
? 第一步:獲取環境信息ExecutionEnvironment.java
/*** The ExecutionEnvironment is the context in which a program is executed. A* {@link LocalEnvironment} will cause execution in the current JVM, a* {@link RemoteEnvironment} will cause execution on a remote setup.** <p>The environment provides methods to control the job execution (such as setting the parallelism)* and to interact with the outside world (data access).** <p>Please note that the execution environment needs strong type information for the input and return types* of all operations that are executed. This means that the environments needs to know that the return* value of an operation is for example a Tuple of String and Integer.* Because the Java compiler throws much of the generic type information away, most methods attempt to re-* obtain that information using reflection. In certain cases, it may be necessary to manually supply that* information to some of the methods.** @see LocalEnvironment* @see RemoteEnvironment*/
創建本地環境
/*** Creates a {@link LocalEnvironment} which is used for executing Flink jobs.** @param configuration to start the {@link LocalEnvironment} with* @param defaultParallelism to initialize the {@link LocalEnvironment} with* @return {@link LocalEnvironment}*/private static LocalEnvironment createLocalEnvironment(Configuration configuration, int defaultParallelism) {final LocalEnvironment localEnvironment = new LocalEnvironment(configuration);if (defaultParallelism > 0) {localEnvironment.setParallelism(defaultParallelism);}return localEnvironment;}第二步:獲取外部數據,創建數據集? ExecutionEnvironment.java
/*** Creates a DataSet from the given non-empty collection. Note that this operation will result* in a non-parallel data source, i.e. a data source with a parallelism of one.** <p>The returned DataSet is typed to the given TypeInformation.** @param data The collection of elements to create the data set from.* @param type The TypeInformation for the produced data set.* @return A DataSet representing the given collection.** @see #fromCollection(Collection)*/public <X> DataSource<X> fromCollection(Collection<X> data, TypeInformation<X> type) {return fromCollection(data, type, Utils.getCallLocationName());}private <X> DataSource<X> fromCollection(Collection<X> data, TypeInformation<X> type, String callLocationName) {CollectionInputFormat.checkCollection(data, type.getTypeClass());return new DataSource<>(this, new CollectionInputFormat<>(data, type.createSerializer(config)), type, callLocationName);}? 數據集的繼承關系
其中,DataSet是一組相同類型數據的集合,抽象類,它提供了數據的轉換功能,如map,reduce,join和coGroup
/*** A DataSet represents a collection of elements of the same type.** <p>A DataSet can be transformed into another DataSet by applying a transformation as for example* <ul>* <li>{@link DataSet#map(org.apache.flink.api.common.functions.MapFunction)},</li>* <li>{@link DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction)},</li>* <li>{@link DataSet#join(DataSet)}, or</li>* <li>{@link DataSet#coGroup(DataSet)}.</li>* </ul>** @param <T> The type of the DataSet, i.e., the type of the elements of the DataSet.*/Operator是java api的操作基類,抽象類
/*** Base class of all operators in the Java API.** @param <OUT> The type of the data set produced by this operator.* @param <O> The type of the operator, so that we can return it.*/ @Public public abstract class Operator<OUT, O extends Operator<OUT, O>> extends DataSet<OUT> {DataSource具體實現類。
/*** An operation that creates a new data set (data source). The operation acts as the* data set on which to apply further transformations. It encapsulates additional* configuration parameters, to customize the execution.** @param <OUT> The type of the elements produced by this data source.*/ @Public public class DataSource<OUT> extends Operator<OUT, DataSource<OUT>> {第三步:對輸入數據集進行轉換
DataSet<Tuple2<String, Integer>> counts =// split up the lines in pairs (2-tuples) containing: (word,1)text.flatMap(new Tokenizer())// group by the tuple field "0" and sum up tuple field "1".groupBy(0).sum(1);? ? ?>>調用map?DataSet.java
/*** Applies a FlatMap transformation on a {@link DataSet}.** <p>The transformation calls a {@link org.apache.flink.api.common.functions.RichFlatMapFunction} for each element of the DataSet.* Each FlatMapFunction call can return any number of elements including none.** @param flatMapper The FlatMapFunction that is called for each element of the DataSet.* @return A FlatMapOperator that represents the transformed DataSet.** @see org.apache.flink.api.common.functions.RichFlatMapFunction* @see FlatMapOperator* @see DataSet*/public <R> FlatMapOperator<T, R> flatMap(FlatMapFunction<T, R> flatMapper) {if (flatMapper == null) {throw new NullPointerException("FlatMap function must not be null.");}String callLocation = Utils.getCallLocationName();TypeInformation<R> resultType = TypeExtractor.getFlatMapReturnTypes(flatMapper, getType(), callLocation, true);return new FlatMapOperator<>(this, resultType, clean(flatMapper), callLocation);}>>調用groupby? ?DataSet.java
/*** Groups a {@link Tuple} {@link DataSet} using field position keys.** <p><b>Note: Field position keys only be specified for Tuple DataSets.</b>** <p>The field position keys specify the fields of Tuples on which the DataSet is grouped.* This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation* can be applied.* <ul>* <li>{@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}.* <li>{@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation.* <li>{@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation.* <li>{@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation.* </ul>** @param fields One or more field positions on which the DataSet will be grouped.* @return A Grouping on which a transformation needs to be applied to obtain a transformed DataSet.** @see Tuple* @see UnsortedGrouping* @see AggregateOperator* @see ReduceOperator* @see org.apache.flink.api.java.operators.GroupReduceOperator* @see DataSet*/public UnsortedGrouping<T> groupBy(int... fields) {return new UnsortedGrouping<>(this, new Keys.ExpressionKeys<>(fields, getType()));}?
>>調用sum??UnsortedGrouping.java
/*** Syntactic sugar for aggregate (SUM, field).* @param field The index of the Tuple field on which the aggregation function is applied.* @return An AggregateOperator that represents the summed DataSet.** @see org.apache.flink.api.java.operators.AggregateOperator*/public AggregateOperator<T> sum (int field) {return this.aggregate (Aggregations.SUM, field, Utils.getCallLocationName());}// private helper that allows to set a different call location nameprivate AggregateOperator<T> aggregate(Aggregations agg, int field, String callLocationName) {return new AggregateOperator<T>(this, agg, field, callLocationName);}?UnsortedGrouping和DataSet的關系
UnsortedGrouping使用AggregateOperator做聚合
第四步:對轉換的輸入值進行處理
// emit resultif (params.has("output")) {counts.writeAsCsv(params.get("output"), "\n", " ");// execute programenv.execute("WordCount Example");} else {System.out.println("Printing result to stdout. Use --output to specify output path.");counts.print();}如果不指定output參數,則打印到控制臺
/*** Prints the elements in a DataSet to the standard output stream {@link System#out} of the JVM that calls* the print() method. For programs that are executed in a cluster, this method needs* to gather the contents of the DataSet back to the client, to print it there.** <p>The string written for each element is defined by the {@link Object#toString()} method.** <p>This method immediately triggers the program execution, similar to the* {@link #collect()} and {@link #count()} methods.** @see #printToErr()* @see #printOnTaskManager(String)*/public void print() throws Exception {List<T> elements = collect();for (T e: elements) {System.out.println(e);}}若指定輸出,則先進行輸入轉換為csv文件的DataSink,它是用來存儲數據結果的
/*** An operation that allows storing data results.* @param <T>*/過程如下:
/*** Writes a {@link Tuple} DataSet as CSV file(s) to the specified location with the specified field and line delimiters.** <p><b>Note: Only a Tuple DataSet can written as a CSV file.</b>* For each Tuple field the result of {@link Object#toString()} is written.** @param filePath The path pointing to the location the CSV file is written to.* @param rowDelimiter The row delimiter to separate Tuples.* @param fieldDelimiter The field delimiter to separate Tuple fields.* @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE.** @see Tuple* @see CsvOutputFormat* @see DataSet#writeAsText(String) Output files and directories*/public DataSink<T> writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter, WriteMode writeMode) {return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, writeMode);}@SuppressWarnings("unchecked")private <X extends Tuple> DataSink<T> internalWriteAsCsv(Path filePath, String rowDelimiter, String fieldDelimiter, WriteMode wm) {Preconditions.checkArgument(getType().isTupleType(), "The writeAsCsv() method can only be used on data sets of tuples.");CsvOutputFormat<X> of = new CsvOutputFormat<>(filePath, rowDelimiter, fieldDelimiter);if (wm != null) {of.setWriteMode(wm);}return output((OutputFormat<T>) of);}/*** Emits a DataSet using an {@link OutputFormat}. This method adds a data sink to the program.* Programs may have multiple data sinks. A DataSet may also have multiple consumers (data sinks* or transformations) at the same time.** @param outputFormat The OutputFormat to process the DataSet.* @return The DataSink that processes the DataSet.** @see OutputFormat* @see DataSink*/public DataSink<T> output(OutputFormat<T> outputFormat) {Preconditions.checkNotNull(outputFormat);// configure the type if neededif (outputFormat instanceof InputTypeConfigurable) {((InputTypeConfigurable) outputFormat).setInputType(getType(), context.getConfig());}DataSink<T> sink = new DataSink<>(this, outputFormat, getType());this.context.registerDataSink(sink);return sink;}最后執行job
@Overridepublic JobExecutionResult execute(String jobName) throws Exception {if (executor == null) {startNewSession();}Plan p = createProgramPlan(jobName);// Session management is disabled, revert this commit to enable//p.setJobId(jobID);//p.setSessionTimeout(sessionTimeout); JobExecutionResult result = executor.executePlan(p);this.lastJobExecutionResult = result;return result;}這一階段是內容比較多,放到下一篇講解吧
總結
Apache Flink 功能強大,支持開發和運行多種不同種類的應用程序。它的主要特性包括:批流一體化、精密的狀態管理、事件時間支持以及精確一次的狀態一致性保障等。Flink 不僅可以運行在包括 YARN、 Mesos、Kubernetes 在內的多種資源管理框架上,還支持在裸機集群上獨立部署。在啟用高可用選項的情況下,它不存在單點失效問題。事實證明,Flink 已經可以擴展到數千核心,其狀態可以達到 TB 級別,且仍能保持高吞吐、低延遲的特性。世界各地有很多要求嚴苛的流處理應用都運行在 Flink 之上。
其應用場景如下:
1、事件驅動型應用
典型的事件驅動型應用實例:
反欺詐
異常檢測
基于規則的報警
業務流程監控
(社交網絡)Web 應用
2、數據分析應用
典型的數據分析應用實例
電信網絡質量監控
移動應用中的產品更新及實驗評估分析
消費者技術中的實時數據即席分析
大規模圖分析
3、數據管道應用
典型的數據管道應用實例
電子商務中的實時查詢索引構建
電子商務中的持續 ETL
參考資料
【1】https://flink.apache.org/
【2】https://blog.csdn.net/yangyin007/article/details/82382734
【3】https://flink.apache.org/zh/usecases.html
?
轉載于:https://www.cnblogs.com/davidwang456/p/10948698.html
總結
以上是生活随笔為你收集整理的从flink-example分析flink组件(1)WordCount batch实战及源码分析的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Retrofit分析-漂亮的解耦套路
- 下一篇: JVM SandBox 的技术原理与应用