【Paper】2019_Distributed Optimal Control of Energy Storages in a DC Microgrid with Communication Dela
M. Shi, X. Chen, J. Zhou, Y. Chen, J. Wen and H. He, “Distributed Optimal Control of Energy Storages in a DC Microgrid With Communication Delay,” in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2033-2042, May 2020, doi: 10.1109/TSG.2019.2946173.
文章目錄
- 1. Introduction
- 2. Distributed Optimal Problem in DC Microgrid
- 3. PI Consensus Algorithm based Distributed Optimal Control
- 3.1 PI Consensus Algorithm
- 3.2 Distributed Optimal Control
- 3.3 Stability Analysis
- 4. Performance of Distributed Optimal Control with Time Delay
- 4.1 Steady-state Solution under Time Delay
- 6. Simulation Results
1. Introduction
renewable energy sources (RESs)
energy storages (ESs)
2. Distributed Optimal Problem in DC Microgrid
Maximum Power Point Tracking (MPPT)
vbusi=vref?RdiiESi(1)v_{busi} = v_{ref} - R_{di} ~i_{ESi} \tag{1}vbusi?=vref??Rdi??iESi?(1)
vbusiv_{busi}vbusi?:終點總線電壓
iESii_{ESi}iESi?:第 iii 個 ES 輸出電流
RdiR_{di}Rdi?:下垂系數(shù)
vrefv_{ref}vref?:總線參考電壓
在多個 ES 之間的功率分配與下垂系數(shù)嚴(yán)格成反比,即
Rd1iES1=Rd2iES2=?=RdNiESN(2)R_{d1} i_{ES1} = R_{d2} i_{ES2} = \cdots = R_{dN} i_{ESN} \tag{2}Rd1?iES1?=Rd2?iES2?=?=RdN?iESN?(2)
總線電壓的內(nèi)部偏差最小,即
min?f(vbus)=∑i=1N12(vbusi?vref)2(3)\min f(v_{bus}) = \sum_{i=1}^N \frac{1}{2} (v_{busi} - v_{ref})^2 \tag{3}minf(vbus?)=i=1∑N?21?(vbusi??vref?)2(3)
3. PI Consensus Algorithm based Distributed Optimal Control
3.1 PI Consensus Algorithm
常用的基于平均一致性算法的傳統(tǒng)電壓觀測器是一個比例類型(又稱 P-type)
x˙i(t)=y˙(t)+γ(y˙(t)?xi(t))+∑j∈Niaij(xj(t)?xi(t))(4)\dot{x}_i(t) = \dot{y}(t) + \gamma (\dot{y}(t) - x_i(t)) + \sum_{j \in N_i} a_{ij} (x_j(t) - x_i(t)) \tag{4}x˙i?(t)=y˙?(t)+γ(y˙?(t)?xi?(t))+j∈Ni?∑?aij?(xj?(t)?xi?(t))(4)
xix_ixi?:控制變量
yiy_iyi?:控制輸入
NiN_iNi?:鄰居節(jié)點
γ≥0\gamma \ge 0γ≥0:全局估計參數(shù)
x˙(t)=?γxi(t)+∑j∈Niaij(xj(t)?xi(t))?∑j∈Nibij(wj(t)?wi(t))+γyi(t)w˙i(t)=∑j∈Nibij(xj(t)?xi(t))(5)\begin{aligned} \dot{x}(t) =& -\gamma x_i(t) + \sum_{j \in N_i} a_{ij} (x_j(t) - x_i(t)) \\ &-\sum_{j\in N_i} b_{ij}(w_j(t) - w_i(t)) + \gamma y_i(t) \\ \dot{w}_i(t) =& \sum_{j \in N_i} b_{ij} (x_j(t) - x_i(t)) \end{aligned} \tag{5}x˙(t)=w˙i?(t)=??γxi?(t)+j∈Ni?∑?aij?(xj?(t)?xi?(t))?j∈Ni?∑?bij?(wj?(t)?wi?(t))+γyi?(t)j∈Ni?∑?bij?(xj?(t)?xi?(t))?(5)
wi(t)w_i(t)wi?(t):觀測器內(nèi)部變量
3.2 Distributed Optimal Control
ES 的伏安特性滿足
vbusi=vref+ui?RdiiESi(6)v_{busi} = v_{ref} + u_i - R_{di} ~i_{ESi} \tag{6}vbusi?=vref?+ui??Rdi??iESi?(6)
uiu_iui?:是次級控制的輸出信號
由下垂控制引起的電壓降可以表示為
vdi=RdiiESi(7)v_{di} = R_{di} ~i_{ESi} \tag{7}vdi?=Rdi??iESi?(7)
min?f(u)?∑i=1N12(ui?vdi)2(8)\min f(u) \coloneqq \sum_{i=1}^N \frac{1}{2} (u_i - v_{di})^2 \tag{8}minf(u):=i=1∑N?21?(ui??vdi?)2(8)
控制變量 uiu_iui? 設(shè)計為
u˙i=∑j∈Niaij(vdj?vdi)?∑j∈Ni(ζj?ζi)?γ?i(u)ζ˙i=∑j∈Nibij(vdj?vdi)(9)\begin{aligned} \dot{u}_i &= \sum_{j \in N_i} a_{ij} (v_{dj} - v_{di}) - \sum_{j \in N_i} (\zeta_j - \zeta_i) - \gamma \phi_i(u) \\ \dot{\zeta}_i &= \sum_{j \in N_i} b_{ij} (v_{dj} - v_{di}) \\ \end{aligned}\tag{9}u˙i?ζ˙?i??=j∈Ni?∑?aij?(vdj??vdi?)?j∈Ni?∑?(ζj??ζi?)?γ?i?(u)=j∈Ni?∑?bij?(vdj??vdi?)?(9)
aija_{ij}aij?:權(quán)重系數(shù)
bijb_{ij}bij?:權(quán)重系數(shù)
γ\gammaγ:權(quán)重系數(shù)
ζi\zeta_iζi?:內(nèi)部變量,定義為 vdiv_{di}vdi? 和鄰居差值的積分
u˙i=∑j∈Niaij(vdj?vdi+vleader?vdi)?∑j∈Ni(ζj?ζi)?γ?i(u)ζ˙i=∑j∈Nibij(vdj?vdi)(9)\begin{aligned} \dot{u}_i &= \sum_{j \in N_i} a_{ij} (v_{dj} - v_{di} \red{ + v_{leader}-v_{di}}) - \sum_{j \in N_i} (\zeta_j - \zeta_i) - \gamma \phi_i(u) \\ \dot{\zeta}_i &= \sum_{j \in N_i} b_{ij} (v_{dj} - v_{di}) \\ \end{aligned}\tag{9}u˙i?ζ˙?i??=j∈Ni?∑?aij?(vdj??vdi?+vleader??vdi?)?j∈Ni?∑?(ζj??ζi?)?γ?i?(u)=j∈Ni?∑?bij?(vdj??vdi?)?(9)
3.3 Stability Analysis
4. Performance of Distributed Optimal Control with Time Delay
4.1 Steady-state Solution under Time Delay
u˙i(t)=∑j∈Niaij(vdj(t?τ)?vdi(t))?∑j∈Ni(ζj(t?τ)?ζi(t))?γ?i(ui(t))ζ˙i=∑j∈Nibij(vdj(t?τ)?vdi(t))(23)\begin{aligned} \dot{u}_i(t) &= \sum_{j \in N_i} a_{ij} (v_{dj}(t-\tau) - v_{di}(t)) - \sum_{j \in N_i} (\zeta_j(t-\tau) - \zeta_i(t)) - \gamma \phi_i(u_i(t)) \\ \dot{\zeta}_i &= \sum_{j \in N_i} b_{ij} (v_{dj}(t-\tau) - v_{di}(t)) \\ \end{aligned}\tag{23}u˙i?(t)ζ˙?i??=j∈Ni?∑?aij?(vdj?(t?τ)?vdi?(t))?j∈Ni?∑?(ζj?(t?τ)?ζi?(t))?γ?i?(ui?(t))=j∈Ni?∑?bij?(vdj?(t?τ)?vdi?(t))?(23)
6. Simulation Results
根據(jù)仿真節(jié)點數(shù)量,可以得到通信關(guān)系的Laplacian Matrix
總結(jié)
以上是生活随笔為你收集整理的【Paper】2019_Distributed Optimal Control of Energy Storages in a DC Microgrid with Communication Dela的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【UWB】ELM 极限学习机原理及公式推
- 下一篇: 【Paper】2018_多机器人领航-跟