输入对5层网络迭代次数的影响
制作一個5層網(wǎng)絡和一個3層網(wǎng)絡
圖中左邊的5層網(wǎng)絡很顯然可以看作是由兩個右邊的3層網(wǎng)絡組合而成,所以左邊的網(wǎng)絡的迭代次數(shù)和右邊的網(wǎng)絡的迭代次數(shù)有什么關系?
在《測量一組5層網(wǎng)絡的迭代次數(shù)》測量了輸入固定為0.1時5層網(wǎng)絡和3層網(wǎng)絡收斂迭代次數(shù)之間的關系。本文測量當輸入是0-1之間的隨機數(shù)時對迭代次數(shù)的影響。
將左邊的5層網(wǎng)絡寫成
(r)-3*6*3*6*3-(3*k),k∈{0,1}
意思是向網(wǎng)絡輸入0到1的隨機數(shù)r,輸出是1,0,0。
右邊的3層網(wǎng)絡寫成
(r)-3*6*3-(3*k),k∈{0,1}
其中r的初始化方法是
Random rand1 =new Random();
int ti1=rand1.nextInt(98)+1;
r=((double)ti1/100);
?
用這種辦法制作了三組網(wǎng)絡
(r)-2-10-2-10-2-(2*k),k∈{0,1}
(r)-2-10-2-(2*k),k∈{0,1}
?
(r)-3-10-3-10-3-(3*k),k∈{0,1}
(r)-3-10-3-(3*k),k∈{0,1}
?
(r)-4-10-4-10-4-(4*k),k∈{0,1}
(r)-4-10-4-(4*k),k∈{0,1}
用來比較
(r)-x-10-x-10-x-(x*k),k∈{0,1}
(r)-x-10-x-(x*k),k∈{0,1}
這兩類網(wǎng)絡迭代次數(shù)的關系。
具體的實驗過程
網(wǎng)絡的收斂標準是
if (Math.abs(f4[0]-y[0])< δ? &&? Math.abs(f4[1]-y[1])< δ? &&? Math.abs(f4[2]-y[2])< δ? )
因為對應每個收斂標準δ都有一個特征的迭代次數(shù)n與之對應因此可以用迭代次數(shù)曲線n(δ)來評價網(wǎng)絡性能。
| 具體進樣順序 | ? | ? | ? |
| δ=0.5 | 迭代次數(shù) | ? | |
| r | 1 | 判斷是否達到收斂 | |
| 梯度下降 | ? | ? | ? |
| r | 2 | 判斷是否達到收斂 | |
| 梯度下降 | ? | ? | ? |
| …… | ? | ? | ? |
| 每當網(wǎng)路達到收斂標準記錄迭代次數(shù) | |||
| 將這一過程重復199次 | ? | ? | |
| δ=0.4 | ? | ? | ? |
| …… | ? | ? | ? |
| δ=1e-7 | ? | ? | ? |
本文嘗試了δ從1e-7到0.5的共35個值,當網(wǎng)絡滿足條件收斂是記錄迭代次數(shù)
首先觀察5層網(wǎng)絡迭代次數(shù)的變化
| ? | r-2-10-2-10-2 | r-3-10-3-10-3 | r-4-10-4-10-4 | ? | ? | ? | 0.1-2-10-2-10-2 | 0.1-3-10-3-10-3 | 0.1-4-10-4-10-4 | ? | ? | ? | ? | ? | ||
| δ | 迭代次數(shù)n | 迭代次數(shù)n | 迭代次數(shù)n | r2/r2 | r3/r2 | r4/r2 | δ | 迭代次數(shù)n | 迭代次數(shù)n | 迭代次數(shù)n | 0.1-2/0.1-2 | 0.1-3/0.12 | 0.1-4/0.1-2 | r-2/0.1-2 | r-3/0.1-3 | r-4/0.1-4 |
| 0.5 | 1.904522613 | 1.869346734 | 3 | 1 | 0.981530343 | 1.575197889 | 0.5 | 1.934673367 | 1.959798995 | 3 | 1 | 1.012987013 | 1.550649351 | 0.984415584 | 0.953846154 | 1 |
| 0.4 | 5.341708543 | 5.331658291 | 7 | 1 | 0.998118532 | 1.310442145 | 0.4 | 5.371859296 | 5.341708543 | 7 | 1 | 0.994387278 | 1.303086997 | 0.994387278 | 0.998118532 | 1 |
| 0.3 | 10.34673367 | 10.22613065 | 12 | 1 | 0.988343856 | 1.159786304 | 0.3 | 10.27135678 | 10.18090452 | 11 | 1 | 0.991193738 | 1.070939335 | 1.007338552 | 1.004442251 | 1.090909091 |
| 0.2 | 18.70854271 | 18.30653266 | 20 | 1 | 0.978511953 | 1.069030352 | 0.2 | 18.66331658 | 18.52763819 | 20 | 1 | 0.99273021 | 1.071620894 | 1.002423263 | 0.988066178 | 1 |
| 0.1 | 40.25125628 | 38.37688442 | 38 | 1 | 0.953433208 | 0.944069913 | 0.1 | 40.10050251 | 38.36683417 | 39 | 1 | 0.956766917 | 0.972556391 | 1.003759399 | 1.000261952 | 0.974358974 |
| 0.01 | 325.8040201 | 268.6934673 | 235 | 1 | 0.824708876 | 0.721292512 | 0.01 | 325.6130653 | 268.5025126 | 237 | 1 | 0.824606078 | 0.727857771 | 1.000586447 | 1.000711184 | 0.991561181 |
| 0.001 | 2279.577889 | 1680.497487 | 1398 | 1 | 0.737196783 | 0.613271434 | 0.001 | 2280.115578 | 1684.38191 | 1406 | 1 | 0.738726548 | 0.616635408 | 0.999764183 | 0.997693859 | 0.9943101 |
| 1.00E-04 | 15912.24623 | 12004.45729 | 10590 | 1 | 0.75441626 | 0.665525146 | 1.00E-04 | 15835.47739 | 12056.8191 | 10609 | 1 | 0.76138021 | 0.669951384 | 1.004847902 | 0.995657079 | 0.998209068 |
| 9.00E-05 | 17423.96482 | 13189.36181 | 11673 | 1 | 0.756966738 | 0.669939369 | 9.00E-05 | 17342.0603 | 13253.43719 | 11717 | 1 | 0.764236599 | 0.675640598 | 1.004722883 | 0.995165376 | 0.996244773 |
| 8.00E-05 | 19282.14573 | 14663.1608 | 13043 | 1 | 0.760452753 | 0.676428868 | 8.00E-05 | 19208.1206 | 14739.47739 | 13077 | 1 | 0.767356562 | 0.680805805 | 1.003853846 | 0.9948223 | 0.997400015 |
| 7.00E-05 | 21687.30653 | 16544.53266 | 14783 | 1 | 0.762867101 | 0.681642968 | 7.00E-05 | 21562.95477 | 16633.47236 | 14844 | 1 | 0.771391145 | 0.688402872 | 1.005766917 | 0.994652969 | 0.995890596 |
| 6.00E-05 | 24788.30151 | 19034.80402 | 17128 | 1 | 0.767894646 | 0.690971102 | 6.00E-05 | 24676.82412 | 19138.08543 | 17197 | 1 | 0.775548966 | 0.696888705 | 1.004517493 | 0.994603357 | 0.995987672 |
| 5.00E-05 | 29117.86935 | 22492.8392 | 20378 | 1 | 0.772475449 | 0.699845162 | 5.00E-05 | 28974.85427 | 22613.09045 | 20480 | 1 | 0.780438453 | 0.706819776 | 1.004935834 | 0.994682228 | 0.995019531 |
| 4.00E-05 | 35437.03015 | 27629.55779 | 25185 | 1 | 0.779680399 | 0.710697254 | 4.00E-05 | 35289.97487 | 27783.49749 | 25306 | 1 | 0.787291507 | 0.717087504 | 1.004167055 | 0.994459312 | 0.995218525 |
| 3.00E-05 | 45809.18593 | 36073.57286 | 33209 | 1 | 0.787474654 | 0.724941937 | 3.00E-05 | 45565.71357 | 36295.21106 | 33318 | 1 | 0.796546531 | 0.731207686 | 1.005343324 | 0.993893459 | 0.996728495 |
| 2.00E-05 | 65988.56784 | 52783.36181 | 49229 | 1 | 0.799886458 | 0.746023161 | 2.00E-05 | 65556.1005 | 53122.43719 | 49468 | 1 | 0.810335526 | 0.754590337 | 1.006596905 | 0.993617097 | 0.995168594 |
| 1.00E-05 | 124218.0452 | 102095.9497 | 97192 | 1 | 0.821909164 | 0.782430603 | 1.00E-05 | 123256.9196 | 102725.196 | 97258 | 1 | 0.833423359 | 0.789067261 | 1.007797742 | 0.99387447 | 0.999321393 |
| 9.00E-06 | 136835.3719 | 112952.5578 | 107913 | 1 | 0.825463155 | 0.788633805 | 9.00E-06 | 135849.9447 | 113718.9146 | 108216 | 1 | 0.837092093 | 0.796584792 | 1.007253792 | 0.993260956 | 0.997200044 |
| 8.00E-06 | 152610.0352 | 126633.8995 | 121242 | 1 | 0.829787499 | 0.794456274 | 8.00E-06 | 151453.6382 | 127307.3518 | 121518 | 1 | 0.840569783 | 0.802344542 | 1.00763532 | 0.994710028 | 0.997728732 |
| 7.00E-06 | 172631.2513 | 143969.5829 | 138604 | 1 | 0.833971728 | 0.802890548 | 7.00E-06 | 171409.3065 | 144868.4121 | 139247 | 1 | 0.845160715 | 0.812365459 | 1.007128812 | 0.993795547 | 0.995382306 |
| 6.00E-06 | 199241.1256 | 167092.598 | 161638 | 1 | 0.838645122 | 0.811268254 | 6.00E-06 | 197814.8894 | 168071.0653 | 161784 | 1 | 0.849638093 | 0.817855524 | 1.007209954 | 0.994178253 | 0.999097562 |
| 5.00E-06 | 236247.5427 | 199373.392 | 193006 | 1 | 0.843917315 | 0.816965111 | 5.00E-06 | 234464.0503 | 200668.6884 | 193666 | 1 | 0.855861221 | 0.825994432 | 1.007606677 | 0.9935451 | 0.996592071 |
| 4.00E-06 | 291092.995 | 247769.0754 | 240321 | 1 | 0.851168113 | 0.825581529 | 4.00E-06 | 288965.3467 | 249317.9447 | 241691 | 1 | 0.862795306 | 0.836401329 | 1.007362988 | 0.993787574 | 0.994331605 |
| 3.00E-06 | 381793.9749 | 328359.2915 | 320678 | 1 | 0.860043147 | 0.839924203 | 3.00E-06 | 378816.8543 | 330180.2663 | 322513 | 1 | 0.871609229 | 0.851369194 | 1.007858997 | 0.994484907 | 0.994310307 |
| 2.00E-06 | 560602.8794 | 488816 | 481138 | 1 | 0.871947002 | 0.858251032 | 2.00E-06 | 556550.6985 | 491437.4623 | 482398 | 1 | 0.883005742 | 0.866763803 | 1.007280884 | 0.994665726 | 0.997388049 |
| 1.00E-06 | 1088196.508 | 969244.1558 | 962243 | 1 | 0.890688537 | 0.884254813 | 1.00E-06 | 1080983.186 | 974155.5427 | 964074 | 1 | 0.901175481 | 0.89184921 | 1.006672927 | 0.994958313 | 0.998100768 |
| 9.00E-07 | 1203908.025 | 1075569.915 | 1068340 | 1 | 0.893398742 | 0.88739337 | 9.00E-07 | 1208133.623 | 1080634.106 | 1072751 | 1 | 0.894465716 | 0.887940688 | 0.996502375 | 0.995313686 | 0.995888142 |
| 8.00E-07 | 1348428.719 | 1209469.04 | 1202423 | 1 | 0.89694696 | 0.891721589 | 8.00E-07 | 1353904.367 | 1215191.643 | 1206559 | 1 | 0.897546143 | 0.891170033 | 0.995955661 | 0.995290781 | 0.99657207 |
| 7.00E-07 | 1534027.111 | 1380826.05 | 1375220 | 1 | 0.900131451 | 0.896476985 | 7.00E-07 | 1539773.07 | 1387027.477 | 1381749 | 1 | 0.900799932 | 0.897371845 | 0.996268308 | 0.99552898 | 0.995274829 |
| 6.00E-07 | 1780354.844 | 1610095.312 | 1601415 | 1 | 0.904367642 | 0.899492034 | 6.00E-07 | 1786506.508 | 1616167.709 | 1606431 | 1 | 0.904652573 | 0.899202434 | 0.996556596 | 0.996242719 | 0.99687755 |
| 5.00E-07 | 2125035.533 | 1929071.94 | 1927719 | 1 | 0.907783381 | 0.907146714 | 5.00E-07 | 2133555.362 | 1937818.854 | 1931582 | 1 | 0.90825806 | 0.905334839 | 0.996006746 | 0.995486207 | 0.998000085 |
| 4.00E-07 | 2637184.055 | 2409909.352 | 2410357 | 1 | 0.913819173 | 0.913988918 | 4.00E-07 | 2646545.613 | 2418741.794 | 2414921 | 1 | 0.913924091 | 0.9124804 | 0.996462726 | 0.996348332 | 0.998110083 |
| 3.00E-07 | 3488346.553 | 3209632.161 | 3220585 | 1 | 0.920101289 | 0.923241126 | 3.00E-07 | 3500985.513 | 3222108.256 | 3226161 | 1 | 0.920343213 | 0.921500814 | 0.996389885 | 0.996127971 | 0.99827163 |
| 2.00E-07 | 5184203.387 | 4811423.382 | 4829216 | 1 | 0.928093098 | 0.931525181 | 2.00E-07 | 5199169.422 | 4828569.704 | 4839273 | 1 | 0.928719438 | 0.930778093 | 0.997121457 | 0.996448985 | 0.997921795 |
| 1.00E-07 | 1.02E+07 | 9627046.156 | 9688361 | 1 | 0.943828055 | 0.949839314 | 1.00E-07 | 1.03E+07 | 9653872.432 | 9700878 | 1 | 0.937269168 | 0.941832816 | 0.990291262 | 0.99722119 | 0.998709704 |
?
很明顯當δ<0.1時
r-2-10-2-10-2 ?> ?r-3-10-3-10-3 ?> ?r-4-10-4-10-4
也就是輸入層節(jié)點數(shù)越少迭代次數(shù)越多。
與當輸入固定為0.1的數(shù)據(jù)比較
當δ<0.01時
這組數(shù)據(jù)同樣滿足輸入層節(jié)點數(shù)越少迭代次數(shù)越多的規(guī)律。
再比較隨機輸入與固定輸入迭代次數(shù)之間的比例關系(r)-x-10-x-10-x-(x*k),k∈{0,1}? ???/?? 0.1-x-10-x-10-x-(x*k),k∈{0,1}
從圖中明顯的觀察到隨機輸入網(wǎng)絡(r)-x-10-x-10-x-(x*k),k∈{0,1}的迭代次數(shù)是要稍小于固定輸入網(wǎng)絡0.1-x-10-x-10-x-(x*k),k∈{0,1}的迭代次數(shù)。隨機輸入網(wǎng)絡的迭代次數(shù)大概要比固定輸入0.1的網(wǎng)絡的迭代次數(shù)要少0.5%。
| ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
然后再比較3層網(wǎng)絡的數(shù)據(jù)
| ? | r-2-10-2 | r-3-10-3 | r-4-10-4 | ? | ? | ? | ? | 0.1-2-10-2 | 0.1-3-10-3 | 0.1-4-10-4 | ? | ? | ? | ? | ? | ? |
| δ | 迭代次數(shù)n | 迭代次數(shù)n | 迭代次數(shù)n | r2/r2 | r3/r2 | r4/r2 | δ | 迭代次數(shù)n | 迭代次數(shù)n | 迭代次數(shù)n | 0.1-2/0.1-2 | 0.1-3/0.12 | 0.1-4/0.1-2 | r-2/0.1-2 | r-3/0.1-3 | r-4/0.1-4 |
| 0.5 | 1.869346734 | 2.040201005 | 3 | 1 | 1.091397849 | 1.604838709 | 0.5 | 1.834170854 | 2.150753769 | 4 | 1 | 1.17260274 | 2.180821918 | 1.019178083 | 0.948598131 | 0.75 |
| 0.4 | 5.316582915 | 5.577889447 | 7 | 1 | 1.049149338 | 1.316635161 | 0.4 | 5.467336683 | 5.668341709 | 7 | 1 | 1.036764706 | 1.280330882 | 0.972426471 | 0.984042553 | 1 |
| 0.3 | 10.34673367 | 10.4321608 | 12 | 1 | 1.008256435 | 1.159786304 | 0.3 | 10.3718593 | 10.52763819 | 12 | 1 | 1.015019379 | 1.156976744 | 0.997577519 | 0.990930787 | 1 |
| 0.2 | 18.5678392 | 18.48241206 | 20 | 1 | 0.995399188 | 1.077131258 | 0.2 | 18.98492462 | 19.09547739 | 21 | 1 | 1.005823187 | 1.106140815 | 0.978030704 | 0.967894737 | 0.952380952 |
| 0.1 | 39.7839196 | 38.00502513 | 42 | 1 | 0.955286093 | 1.055702918 | 0.1 | 41.81407035 | 41.92964824 | 43 | 1 | 1.002764091 | 1.028361976 | 0.951448143 | 0.906399808 | 0.976744186 |
| 0.01 | 326.8140704 | 281.0904523 | 347 | 1 | 0.860092872 | 1.061765791 | 0.01 | 405.9145729 | 400.9246231 | 397 | 1 | 0.987706897 | 0.978038303 | 0.805130173 | 0.701105485 | 0.874055416 |
| 0.001 | 2555.768844 | 1994.175879 | 2942 | 1 | 0.78026457 | 1.151121318 | 0.001 | 3909.160804 | 3785.150754 | 3660 | 1 | 0.968277066 | 0.936262329 | 0.653789642 | 0.526841864 | 0.803825137 |
| 1.00E-04 | 21902.38693 | 16359.0402 | 23884 | 1 | 0.74690673 | 1.090474754 | 1.00E-04 | 38025.66332 | 35887.74372 | 33662 | 1 | 0.943776928 | 0.885244255 | 0.575989609 | 0.455839195 | 0.709524092 |
| 9.00E-05 | 23880.13568 | 18649.9598 | 37315 | 1 | 0.780982154 | 1.562595812 | 9.00E-05 | 42192.34171 | 39777.31156 | 37338 | 1 | 0.94276141 | 0.884947327 | 0.565982705 | 0.468859233 | 0.999384006 |
| 8.00E-05 | 27373.11558 | 20427.95477 | 26333 | 1 | 0.74627803 | 0.962002295 | 8.00E-05 | 47395.70352 | 44621.80905 | 41802 | 1 | 0.941473715 | 0.881978679 | 0.57754424 | 0.45780203 | 0.629945936 |
| 7.00E-05 | 30471.34171 | 23575.8593 | 46405 | 1 | 0.77370598 | 1.522906357 | 7.00E-05 | 54052.65327 | 50836.96482 | 47443 | 1 | 0.940508222 | 0.877718246 | 0.563734431 | 0.463754266 | 0.978121114 |
| 6.00E-05 | 33747.86935 | 26453.01508 | 43844 | 1 | 0.783842524 | 1.299163498 | 6.00E-05 | 62950.38191 | 59079.18593 | 55259 | 1 | 0.938504011 | 0.877818344 | 0.536102694 | 0.44775524 | 0.793427315 |
| 5.00E-05 | 41400.74372 | 31641.95477 | 57098 | 1 | 0.764284695 | 1.379153968 | 5.00E-05 | 75340.25628 | 70575.01005 | 65584 | 1 | 0.936750332 | 0.870504074 | 0.549516895 | 0.448345027 | 0.870608685 |
| 4.00E-05 | 50904.86935 | 38461.94975 | 63706 | 1 | 0.755565238 | 1.251471634 | 4.00E-05 | 93917.48744 | 87725.11558 | 81242 | 1 | 0.934065827 | 0.865035918 | 0.542016942 | 0.438437151 | 0.784151055 |
| 3.00E-05 | 68669.09045 | 51233.01508 | 102785 | 1 | 0.746085535 | 1.496816098 | 3.00E-05 | 124764.8342 | 116155.4975 | 107253 | 1 | 0.930995486 | 0.859641266 | 0.550388183 | 0.441072667 | 0.958341492 |
| 2.00E-05 | 98491.42211 | 74906.1206 | 131495 | 1 | 0.760534461 | 1.335090886 | 2.00E-05 | 186176.5779 | 172366.9598 | 158480 | 1 | 0.925825159 | 0.851234896 | 0.529021552 | 0.434573544 | 0.829726148 |
| 1.00E-05 | 193272.4774 | 144249.7286 | 203355 | 1 | 0.746354217 | 1.0521674 | 1.00E-05 | 368710.8643 | 338333.7889 | 308464 | 1 | 0.917612747 | 0.836601331 | 0.524184384 | 0.426353304 | 0.65925035 |
| 9.00E-06 | 206907.4774 | 158850.8543 | 296829 | 1 | 0.767738587 | 1.434597743 | 9.00E-06 | 408984.0804 | 375023.1005 | 341247 | 1 | 0.916962587 | 0.83437722 | 0.505905944 | 0.423576185 | 0.869836218 |
| 8.00E-06 | 237203.201 | 180718.5427 | 363607 | 1 | 0.761872276 | 1.532892467 | 8.00E-06 | 459388.5276 | 420561.8643 | 382394 | 1 | 0.915481861 | 0.832397801 | 0.516345504 | 0.429707394 | 0.950870045 |
| 7.00E-06 | 269616.4372 | 202380.0402 | 421455 | 1 | 0.75062204 | 1.563165081 | 7.00E-06 | 524038.9497 | 478899.1457 | 435268 | 1 | 0.913861739 | 0.830602382 | 0.514496942 | 0.422594281 | 0.968265528 |
| 6.00E-06 | 308451.3015 | 240200 | 405253 | 1 | 0.778729086 | 1.313831383 | 6.00E-06 | 609813.0704 | 556314.598 | 504206 | 1 | 0.912270702 | 0.826820586 | 0.505812874 | 0.431770083 | 0.803744898 |
| 5.00E-06 | 366383.0905 | 279138.8844 | 438198 | 1 | 0.761877094 | 1.196010437 | 5.00E-06 | 729919.3065 | 664199.0553 | 600920 | 1 | 0.909962306 | 0.823269086 | 0.50195013 | 0.420263899 | 0.729211875 |
| 4.00E-06 | 441795.6482 | 344849.6935 | 733902 | 1 | 0.780563808 | 1.661179785 | 4.00E-06 | 909130.6181 | 825530.8241 | 744853 | 1 | 0.908044243 | 0.819302513 | 0.485953987 | 0.417730851 | 0.98529777 |
| 3.00E-06 | 587062.9196 | 459529.0302 | 747879 | 1 | 0.78275942 | 1.273933296 | 3.00E-06 | 1207124.558 | 1091742.894 | 980381 | 1 | 0.904416107 | 0.812162252 | 0.486331684 | 0.420913232 | 0.762845261 |
| 2.00E-06 | 881343.3819 | 672539.7437 | 1245116 | 1 | 0.763084806 | 1.412747886 | 2.00E-06 | 1799195.739 | 1619069.065 | 1449669 | 1 | 0.899884893 | 0.805731677 | 0.489854085 | 0.415386692 | 0.858896755 |
| 1.00E-06 | 1691667.427 | 1292568.874 | 2046819 | 1 | 0.764079779 | 1.209941722 | 1.00E-06 | 3559300.412 | 3175825.116 | 2818734 | 1 | 0.892261048 | 0.791934839 | 0.475280879 | 0.407002535 | 0.726148335 |
| 9.00E-07 | 1861192.327 | 1469246.196 | 2010564 | 1 | 0.789411269 | 1.080255904 | 9.00E-07 | 3947484.774 | 3517441.141 | 3123123 | 1 | 0.891058824 | 0.791167839 | 0.471488159 | 0.417703136 | 0.643767152 |
| 8.00E-07 | 2080246.372 | 1621744.271 | 2166817 | 1 | 0.779592404 | 1.041615565 | 8.00E-07 | 4433661.618 | 3943425.156 | 3493458 | 1 | 0.889428535 | 0.787939699 | 0.469193762 | 0.411252707 | 0.620249907 |
| 7.00E-07 | 2464329.97 | 1797949.739 | 3092601 | 1 | 0.72958969 | 1.254945984 | 7.00E-07 | 5056311.834 | 4490016.492 | 3972648 | 1 | 0.888002291 | 0.785680973 | 0.487376976 | 0.40043277 | 0.778473451 |
| 6.00E-07 | 2925796.92 | 2091886.859 | 2729326 | 1 | 0.714980197 | 0.93284875 | 6.00E-07 | 5882920.477 | 5216202.241 | 4605197 | 1 | 0.886668834 | 0.782807964 | 0.497337493 | 0.401036379 | 0.59266216 |
| 5.00E-07 | 3289760.563 | 2467525.844 | 3698517 | 1 | 0.750062443 | 1.124251121 | 5.00E-07 | 7040336.97 | 6225307.176 | 5492530 | 1 | 0.884234264 | 0.780151578 | 0.467273168 | 0.396370135 | 0.673372198 |
| 4.00E-07 | 4007427.271 | 3216941.045 | 5727957 | 1 | 0.802744711 | 1.429335235 | 4.00E-07 | 8766715.804 | 7731842.281 | 6800941 | 1 | 0.881954252 | 0.775768389 | 0.457118419 | 0.416063976 | 0.842230068 |
| 3.00E-07 | 5245088.296 | 4254122.518 | 6026219 | 1 | 0.811067856 | 1.14892613 | 3.00E-07 | 1.16E+07 | 1.02E+07 | 8973350 | 1 | 0.879310345 | 0.773564655 | 0.452162784 | 0.417070835 | 0.671568478 |
| 2.00E-07 | 7786895.241 | 5986582.417 | 1.07E+07 | 1 | 0.768802229 | 1.374103499 | 2.00E-07 | 1.73E+07 | 1.52E+07 | 1.32E+07 | 1 | 0.878612717 | 0.76300578 | 0.450109552 | 0.393854106 | 0.810606061 |
| 1.00E-07 | 1.58E+07 | 1.23E+07 | 2.71E+07 | 1 | 0.778481013 | 1.715189873 | 1.00E-07 | 3.42E+07 | 2.97E+07 | 2.58E+07 | 1 | 0.868421053 | 0.754385965 | 0.461988304 | 0.414141414 | 1.050387597 |
?
3層隨機輸入數(shù)據(jù)比較
r-2-10-2>r-3-10-3但r-4-10-4的數(shù)據(jù)變的不規(guī)則
3層固定輸入的數(shù)據(jù)
這個明顯的0.1-2-10-2>0.1-3-10-3>0.1-4-10-4,輸入節(jié)點數(shù)越少迭代次數(shù)越多。
比較隨機輸入和固定輸入的比值
若不考慮r-4和0.1-4的值
r-2/0.1-2? > r-3/0.1-3 的值但都接近0.5.
再比較3層網(wǎng)絡和5層網(wǎng)絡的迭代次數(shù)的比值
| ? | r-2-10-2 | r-3-10-3 | r-4-10-4 | ? | 0.1-2-10-2 | 0.1-3-10-3 | 0.1-4-10-4 |
| δ | r-2-10-2-10-2 | r-3-10-3-10-3 | r-4-10-4-10-4 | δ | 0.1-2-10-2-10-2 | 0.1-3-10-3-10-3 | 0.1-4-10-4-10-4 |
| 0.5 | 0.981530343 | 1.091397849 | 1 | 0.5 | 0.948051948 | 1.097435898 | 1.333333333 |
| 0.4 | 0.995296331 | 1.046182846 | 1 | 0.4 | 1.01777362 | 1.061147695 | 1 |
| 0.3 | 1 | 1.02014742 | 1 | 0.3 | 1.009784737 | 1.034057256 | 1.090909091 |
| 0.2 | 0.992479184 | 1.009607467 | 1 | 0.2 | 1.017232095 | 1.030648224 | 1.05 |
| 0.1 | 0.988389513 | 0.990310331 | 1.105263158 | 0.1 | 1.04273183 | 1.092861821 | 1.102564103 |
| 0.01 | 1.003100178 | 1.046138022 | 1.476595745 | 0.01 | 1.246616356 | 1.493187603 | 1.675105485 |
| 0.001 | 1.121158815 | 1.186658055 | 2.104434907 | 0.001 | 1.714457303 | 2.247204587 | 2.603129445 |
| 1.00E-04 | 1.376448467 | 1.36274717 | 2.255335222 | 1.00E-04 | 2.401295672 | 2.976551562 | 3.172966349 |
| 9.00E-05 | 1.37053397 | 1.414015331 | 3.196693224 | 9.00E-05 | 2.432948622 | 3.001282685 | 3.186651873 |
| 8.00E-05 | 1.419609413 | 1.393148111 | 2.018937361 | 8.00E-05 | 2.467482608 | 3.027367109 | 3.196604726 |
| 7.00E-05 | 1.405031172 | 1.424993971 | 3.139078671 | 7.00E-05 | 2.506736848 | 3.056305005 | 3.196106171 |
| 6.00E-05 | 1.361443394 | 1.389718279 | 2.559785147 | 6.00E-05 | 2.55099204 | 3.086995622 | 3.213293016 |
| 5.00E-05 | 1.421832869 | 1.406756812 | 2.801943272 | 5.00E-05 | 2.600194485 | 3.12098031 | 3.20234375 |
| 4.00E-05 | 1.436488022 | 1.392058101 | 2.529521541 | 4.00E-05 | 2.661307858 | 3.157454011 | 3.210384889 |
| 3.00E-05 | 1.499024465 | 1.420236783 | 3.095094703 | 3.00E-05 | 2.738129713 | 3.200298169 | 3.219070773 |
| 2.00E-05 | 1.492552806 | 1.419123717 | 2.67108818 | 2.00E-05 | 2.839958089 | 3.244711066 | 3.203687232 |
| 1.00E-05 | 1.555913049 | 1.412883949 | 2.092301836 | 1.00E-05 | 2.991400933 | 3.293581342 | 3.171605421 |
| 9.00E-06 | 1.512090584 | 1.406350218 | 2.750632454 | 9.00E-06 | 3.010557577 | 3.297807597 | 3.153387669 |
| 8.00E-06 | 1.554309326 | 1.42709451 | 2.999018492 | 8.00E-06 | 3.033195723 | 3.303515927 | 3.146809526 |
| 7.00E-06 | 1.561805497 | 1.405713875 | 3.040713111 | 7.00E-06 | 3.057237442 | 3.305752709 | 3.125869857 |
| 6.00E-06 | 1.548130691 | 1.437526275 | 2.507164157 | 6.00E-06 | 3.082746057 | 3.309996263 | 3.1165381 |
| 5.00E-06 | 1.550844027 | 1.400080932 | 2.270385377 | 5.00E-06 | 3.113139543 | 3.309928722 | 3.102867824 |
| 4.00E-06 | 1.517713088 | 1.391818947 | 3.053840488 | 4.00E-06 | 3.146157934 | 3.311156865 | 3.081840035 |
| 3.00E-06 | 1.537643227 | 1.39947016 | 2.332180567 | 3.00E-06 | 3.186565076 | 3.306505583 | 3.03981855 |
| 2.00E-06 | 1.572134954 | 1.375854603 | 2.587856291 | 2.00E-06 | 3.232761622 | 3.294557679 | 3.005130618 |
| 1.00E-06 | 1.55456061 | 1.333584388 | 2.127133167 | 1.00E-06 | 3.29265104 | 3.260080117 | 2.923773486 |
| 9.00E-07 | 1.545958901 | 1.366016449 | 1.881951439 | 9.00E-07 | 3.267423983 | 3.254978833 | 2.911321453 |
| 8.00E-07 | 1.542718827 | 1.34087291 | 1.80204221 | 8.00E-07 | 3.274722887 | 3.245105559 | 2.895389285 |
| 7.00E-07 | 1.606444862 | 1.30208272 | 2.248804555 | 7.00E-07 | 3.283803265 | 3.237150357 | 2.875086575 |
| 6.00E-07 | 1.643378526 | 1.299231694 | 1.704321491 | 6.00E-07 | 3.292974557 | 3.227512969 | 2.866725679 |
| 5.00E-07 | 1.548096732 | 1.279125881 | 1.918597576 | 5.00E-07 | 3.299814523 | 3.212533082 | 2.843539648 |
| 4.00E-07 | 1.519585735 | 1.334880518 | 2.376393621 | 4.00E-07 | 3.312512643 | 3.196638145 | 2.816216762 |
| 3.00E-07 | 1.503602987 | 1.325423695 | 1.871156638 | 3.00E-07 | 3.313352757 | 3.165629206 | 2.781432793 |
| 2.00E-07 | 1.502042775 | 1.244243531 | 2.215680558 | 2.00E-07 | 3.32745456 | 3.147930118 | 2.727682443 |
| 1.00E-07 | 1.549019608 | 1.277650465 | 2.79717075 | 1.00E-07 | 3.32038835 | 3.07648565 | 2.659553084 |
?
隨機輸入3層網(wǎng)絡的迭代次數(shù)是對應5層網(wǎng)絡的迭代次數(shù)的大約1.5倍左右
固定輸入3層網(wǎng)絡的迭代次數(shù)是對應5層網(wǎng)絡的迭代次數(shù)的3倍左右。
這組實驗表明3層網(wǎng)絡隨機輸入的迭代次數(shù)比固定輸入的迭代次數(shù)要小的多,甚至小于后者的50%。
而5層網(wǎng)絡的隨機輸入的迭代次數(shù)只比固定輸入的迭代次數(shù)略小,二者相差甚至小于1%,也就是5層網(wǎng)絡對輸入數(shù)據(jù)并不敏感。
?
| 實驗數(shù)據(jù) |
| 學習率 0.1 |
| 權重初始化方式 |
| Random rand1 =new Random(); |
| int ti1=rand1.nextInt(98)+1; |
| int xx=1; |
| if(ti1%2==0) |
| { xx=-1;} |
| tw[a][b]=xx*((double)ti1/1000); |
| ? |
?
dr-2-10-2-10-2?? ? ?? ? ?? ? ?? ? ?? ? ?? ?
??? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?
f2[0]?? ?f2[1]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.527608315?? ?0.472339838?? ?1.904522613?? ?0?? ?0.5?? ?0.412060302?? ?82?? ?0.001366667
0.619745309?? ?0.379034134?? ?5.341708543?? ?0?? ?0.4?? ?0.391959799?? ?78?? ?0.0013
0.712427458?? ?0.285357852?? ?10.34673367?? ?0?? ?0.3?? ?0.155778894?? ?31?? ?0.000516667
0.806808233?? ?0.19310006?? ?18.70854271?? ?0?? ?0.2?? ?0.236180905?? ?47?? ?0.000783333
0.902011379?? ?0.097776184?? ?40.25125628?? ?0?? ?0.1?? ?0.688442211?? ?142?? ?0.002366667
0.990027433?? ?0.009968527?? ?325.8040201?? ?0?? ?0.01?? ?3.015075377?? ?600?? ?0.01
0.999000529?? ?1.00E-03?? ?2279.577889?? ?0?? ?0.001?? ?15.2361809?? ?3047?? ?0.050783333
0.999900012?? ?1.00E-04?? ?15912.24623?? ?0?? ?1.00E-04?? ?91.9798995?? ?18304?? ?0.305066667
0.999910011?? ?9.00E-05?? ?17423.96482?? ?0?? ?9.00E-05?? ?98.45728643?? ?19609?? ?0.326816667
0.999920009?? ?8.00E-05?? ?19282.14573?? ?0?? ?8.00E-05?? ?109.1306533?? ?21733?? ?0.362216667
0.999930008?? ?7.00E-05?? ?21687.30653?? ?0?? ?7.00E-05?? ?122.4623116?? ?24370?? ?0.406166667
0.999940006?? ?6.00E-05?? ?24788.30151?? ?0?? ?6.00E-05?? ?140.6532663?? ?27990?? ?0.4665
0.999950004?? ?5.00E-05?? ?29117.86935?? ?0?? ?5.00E-05?? ?164.2462312?? ?32700?? ?0.545
0.999960004?? ?4.00E-05?? ?35437.03015?? ?0?? ?4.00E-05?? ?199.3969849?? ?39696?? ?0.6616
0.999970003?? ?3.00E-05?? ?45809.18593?? ?0?? ?3.00E-05?? ?259.8492462?? ?51720?? ?0.862
0.999980002?? ?2.00E-05?? ?65988.56784?? ?0?? ?2.00E-05?? ?375.7236181?? ?74778?? ?1.2463
0.999990001?? ?1.00E-05?? ?124218.0452?? ?0?? ?1.00E-05?? ?703.4974874?? ?140005?? ?2.333416667
0.999991001?? ?9.00E-06?? ?136835.3719?? ?0?? ?9.00E-06?? ?761.959799?? ?151639?? ?2.527316667
0.999992001?? ?8.00E-06?? ?152610.0352?? ?0?? ?8.00E-06?? ?861.0150754?? ?171358?? ?2.855966667
0.999993001?? ?7.00E-06?? ?172631.2513?? ?0?? ?7.00E-06?? ?972.6281407?? ?193560?? ?3.226
0.999994001?? ?6.00E-06?? ?199241.1256?? ?0?? ?6.00E-06?? ?1125.437186?? ?223962?? ?3.7327
0.999995001?? ?5.00E-06?? ?236247.5427?? ?0?? ?5.00E-06?? ?1336.170854?? ?265906?? ?4.431766667
0.999996001?? ?4.00E-06?? ?291092.995?? ?0?? ?4.00E-06?? ?1650.854271?? ?328528?? ?5.475466667
0.999997?? ?3.00E-06?? ?381793.9749?? ?0?? ?3.00E-06?? ?2128.020101?? ?423493?? ?7.058216667
0.999998?? ?2.00E-06?? ?560602.8794?? ?0?? ?2.00E-06?? ?3168.80402?? ?630608?? ?10.51013333
0.999999?? ?1.00E-06?? ?1088196.508?? ?0?? ?1.00E-06?? ?6009.703518?? ?1195947?? ?19.93245
0.9999991?? ?9.00E-07?? ?1203908.025?? ?0?? ?9.00E-07?? ?6628.276382?? ?1319028?? ?21.9838
0.9999992?? ?8.00E-07?? ?1348428.719?? ?0?? ?8.00E-07?? ?7429.336683?? ?1478438?? ?24.64063333
0.9999993?? ?7.00E-07?? ?1534027.111?? ?0?? ?7.00E-07?? ?8488.236181?? ?1689160?? ?28.15266667
0.9999994?? ?6.00E-07?? ?1780354.844?? ?0?? ?6.00E-07?? ?10088.17588?? ?2007549?? ?33.45915
0.9999995?? ?5.00E-07?? ?2125035.533?? ?0?? ?5.00E-07?? ?11910.59799?? ?2370210?? ?39.5035
0.9999996?? ?4.00E-07?? ?2637184.055?? ?0?? ?4.00E-07?? ?14739.1809?? ?2933128?? ?48.88546667
0.9999997?? ?3.00E-07?? ?3488346.553?? ?0?? ?3.00E-07?? ?19689.76382?? ?3918288?? ?65.3048
0.9999998?? ?2.00E-07?? ?5184203.387?? ?0?? ?2.00E-07?? ?29417.75377?? ?5854135?? ?97.56891667
0.9999999?? ?1.00E-07?? ?1.02E+07?? ?0?? ?1.00E-07?? ?54512.9598?? ?10848096?? ?180.8016
?? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?
?? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?607.63275
dr-3-10-3-10-3?? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526440336?? ?0.472256796?? ?0.472675861?? ?1.869346734?? ?0?? ?0.5?? ?0.472361809?? ?109?? ?0.001816667
0.620190597?? ?0.378660228?? ?0.381783874?? ?5.331658291?? ?0?? ?0.4?? ?0.155778894?? ?31?? ?0.000516667
0.713801296?? ?0.285566484?? ?0.287647306?? ?10.22613065?? ?0?? ?0.3?? ?0.236180905?? ?63?? ?0.00105
0.806969107?? ?0.192119984?? ?0.194035873?? ?18.30653266?? ?0?? ?0.2?? ?0.236180905?? ?47?? ?0.000783333
0.902155298?? ?0.097590075?? ?0.097948187?? ?38.37688442?? ?0?? ?0.1?? ?0.472361809?? ?94?? ?0.001566667
0.99004019?? ?0.009950875?? ?0.009949246?? ?268.6934673?? ?0?? ?0.01?? ?2.834170854?? ?564?? ?0.0094
0.99900074?? ?9.99E-04?? ?9.99E-04?? ?1680.497487?? ?0?? ?0.001?? ?13.06030151?? ?2600?? ?0.043333333
0.999900025?? ?1.00E-04?? ?1.00E-04?? ?12004.45729?? ?0?? ?1.00E-04?? ?78.81909548?? ?15700?? ?0.261666667
0.999910028?? ?9.00E-05?? ?9.00E-05?? ?13189.36181?? ?0?? ?9.00E-05?? ?77.22613065?? ?15383?? ?0.256383333
0.999920025?? ?8.00E-05?? ?8.00E-05?? ?14663.1608?? ?0?? ?8.00E-05?? ?85.75376884?? ?17067?? ?0.28445
0.999930019?? ?7.00E-05?? ?7.00E-05?? ?16544.53266?? ?0?? ?7.00E-05?? ?97.30150754?? ?19378?? ?0.322966667
0.999940016?? ?6.00E-05?? ?6.00E-05?? ?19034.80402?? ?0?? ?6.00E-05?? ?113.3366834?? ?22554?? ?0.3759
0.999950014?? ?5.00E-05?? ?5.00E-05?? ?22492.8392?? ?0?? ?5.00E-05?? ?133.7688442?? ?26620?? ?0.443666667
0.999960011?? ?4.00E-05?? ?4.00E-05?? ?27629.55779?? ?0?? ?4.00E-05?? ?163.120603?? ?32476?? ?0.541266667
0.999970009?? ?3.00E-05?? ?3.00E-05?? ?36073.57286?? ?0?? ?3.00E-05?? ?211.8140704?? ?42151?? ?0.702516667
0.999980007?? ?2.00E-05?? ?2.00E-05?? ?52783.36181?? ?0?? ?2.00E-05?? ?309.5376884?? ?61614?? ?1.0269
0.999990003?? ?1.00E-05?? ?1.00E-05?? ?102095.9497?? ?0?? ?1.00E-05?? ?599.5125628?? ?119303?? ?1.988383333
0.999991002?? ?9.00E-06?? ?9.00E-06?? ?112952.5578?? ?0?? ?9.00E-06?? ?670.1407035?? ?133358?? ?2.222633333
0.999992002?? ?8.00E-06?? ?8.00E-06?? ?126633.8995?? ?0?? ?8.00E-06?? ?757.7085427?? ?150784?? ?2.513066667
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?143969.5829?? ?0?? ?7.00E-06?? ?875.2311558?? ?174172?? ?2.902866667
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?167092.598?? ?0?? ?6.00E-06?? ?1003.854271?? ?199767?? ?3.32945
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?199373.392?? ?0?? ?5.00E-06?? ?1183.085427?? ?235434?? ?3.9239
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?247769.0754?? ?0?? ?4.00E-06?? ?1512.356784?? ?300976?? ?5.016266667
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?328359.2915?? ?0?? ?3.00E-06?? ?1945.427136?? ?387140?? ?6.452333333
0.999998001?? ?2.00E-06?? ?2.00E-06?? ?488816?? ?0?? ?2.00E-06?? ?2507.829146?? ?499074?? ?8.3179
0.999999?? ?1.00E-06?? ?1.00E-06?? ?969244.1558?? ?0?? ?1.00E-06?? ?5722.160804?? ?1138710?? ?18.9785
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?1075569.915?? ?0?? ?9.00E-07?? ?6469.055276?? ?1287342?? ?21.4557
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?1209469.04?? ?0?? ?8.00E-07?? ?7172.030151?? ?1427234?? ?23.78723333
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?1380826.05?? ?0?? ?7.00E-07?? ?8186.537688?? ?1629128?? ?27.15213333
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?1610095.312?? ?0?? ?6.00E-07?? ?9600.678392?? ?1910545?? ?31.84241667
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?1929071.94?? ?0?? ?5.00E-07?? ?11807.44221?? ?2349681?? ?39.16135
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?2409909.352?? ?0?? ?4.00E-07?? ?14563.61809?? ?2898167?? ?48.30278333
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3209632.161?? ?0?? ?3.00E-07?? ?20176.22111?? ?4015080?? ?66.918
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?4811423.382?? ?0?? ?2.00E-07?? ?28304.31156?? ?5632558?? ?93.87596667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?9627046.156?? ?0?? ?1.00E-07?? ?56264.20603?? ?11196577?? ?186.6096167
?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?599.0246833
dr-4-10-4-10-4?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?f2[3]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526261475?? ?0.470138296?? ?0.473433824?? ?0.470196578?? ?3?? ?0?? ?0.5?? ?0.72361809?? ?144?? ?0.0024
0.619481649?? ?0.377210594?? ?0.378727222?? ?0.378469657?? ?7?? ?0?? ?0.4?? ?0.155778894?? ?47?? ?0.000783333
0.713542792?? ?0.285969096?? ?0.285711052?? ?0.286628343?? ?12?? ?0?? ?0.3?? ?0.316582915?? ?63?? ?0.00105
0.808050416?? ?0.191568156?? ?0.192380965?? ?0.19206912?? ?20?? ?0?? ?0.2?? ?0.391959799?? ?78?? ?0.0013
0.902437476?? ?0.097327741?? ?0.097530188?? ?0.097340394?? ?38?? ?0?? ?0.1?? ?0.467336683?? ?109?? ?0.001816667
0.990051834?? ?0.00994703?? ?0.009956631?? ?0.009950273?? ?235?? ?0?? ?0.01?? ?2.462311558?? ?507?? ?0.00845
0.999001067?? ?9.99E-04?? ?9.99E-04?? ?9.99E-04?? ?1398?? ?0?? ?0.001?? ?12.98492462?? ?2584?? ?0.043066667
0.999900049?? ?1.00E-04?? ?9.99E-05?? ?9.99E-05?? ?10590?? ?0?? ?1.00E-04?? ?74.13065327?? ?14752?? ?0.245866667
0.999910044?? ?9.00E-05?? ?9.00E-05?? ?9.00E-05?? ?11673?? ?0?? ?9.00E-05?? ?77.95979899?? ?15529?? ?0.258816667
0.999920041?? ?8.00E-05?? ?8.00E-05?? ?8.00E-05?? ?13043?? ?0?? ?8.00E-05?? ?88.72361809?? ?17657?? ?0.294283333
0.999930029?? ?7.00E-05?? ?7.00E-05?? ?7.00E-05?? ?14783?? ?0?? ?7.00E-05?? ?100.798995?? ?20075?? ?0.334583333
0.999940023?? ?6.00E-05?? ?6.00E-05?? ?6.00E-05?? ?17128?? ?0?? ?6.00E-05?? ?115.5527638?? ?22995?? ?0.38325
0.999950023?? ?5.00E-05?? ?5.00E-05?? ?5.00E-05?? ?20378?? ?0?? ?5.00E-05?? ?141.6733668?? ?28193?? ?0.469883333
0.999960015?? ?4.00E-05?? ?4.00E-05?? ?4.00E-05?? ?25185?? ?0?? ?4.00E-05?? ?175.1155779?? ?34849?? ?0.580816667
0.999970011?? ?3.00E-05?? ?3.00E-05?? ?3.00E-05?? ?33209?? ?0?? ?3.00E-05?? ?230.638191?? ?45897?? ?0.76495
0.999980007?? ?2.00E-05?? ?2.00E-05?? ?2.00E-05?? ?49229?? ?0?? ?2.00E-05?? ?339.8190955?? ?67631?? ?1.127183333
0.999990004?? ?1.00E-05?? ?9.99E-06?? ?1.00E-05?? ?97192?? ?0?? ?1.00E-05?? ?671.6934673?? ?133680?? ?2.228
0.999991003?? ?9.00E-06?? ?9.00E-06?? ?9.00E-06?? ?107913?? ?0?? ?9.00E-06?? ?740.879397?? ?147437?? ?2.457283333
0.999992003?? ?8.00E-06?? ?8.00E-06?? ?8.00E-06?? ?121242?? ?0?? ?8.00E-06?? ?837.6030151?? ?166685?? ?2.778083333
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?7.00E-06?? ?138604?? ?0?? ?7.00E-06?? ?956.9949749?? ?190442?? ?3.174033333
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?6.00E-06?? ?161638?? ?0?? ?6.00E-06?? ?1119.080402?? ?222697?? ?3.711616667
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?5.00E-06?? ?193006?? ?0?? ?5.00E-06?? ?1340.954774?? ?266862?? ?4.4477
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?4.00E-06?? ?240321?? ?0?? ?4.00E-06?? ?1673.728643?? ?333072?? ?5.5512
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?3.00E-06?? ?320678?? ?0?? ?3.00E-06?? ?2218.623116?? ?441506?? ?7.358433333
0.999998?? ?2.00E-06?? ?2.00E-06?? ?2.00E-06?? ?481138?? ?0?? ?2.00E-06?? ?3369.929648?? ?670625?? ?11.17708333
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1.00E-06?? ?962243?? ?0?? ?1.00E-06?? ?6656.326633?? ?1324615?? ?22.07691667
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?9.00E-07?? ?1068340?? ?0?? ?9.00E-07?? ?7402.738693?? ?1473150?? ?24.5525
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?8.00E-07?? ?1202423?? ?0?? ?8.00E-07?? ?8283.81407?? ?1648481?? ?27.47468333
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?7.00E-07?? ?1375220?? ?0?? ?7.00E-07?? ?9110.095477?? ?1812943?? ?30.21571667
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?6.00E-07?? ?1601415?? ?0?? ?6.00E-07?? ?10525.52261?? ?2094580?? ?34.90966667
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?5.00E-07?? ?1927719?? ?0?? ?5.00E-07?? ?12147.62312?? ?2417392?? ?40.28986667
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?4.00E-07?? ?2410357?? ?0?? ?4.00E-07?? ?15609.35678?? ?3106310?? ?51.77183333
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3.00E-07?? ?3220585?? ?0?? ?3.00E-07?? ?20894.52261?? ?4158010?? ?69.30016667
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?2.00E-07?? ?4829216?? ?0?? ?2.00E-07?? ?31439.65829?? ?6256492?? ?104.2748667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.00E-07?? ?9688361?? ?0?? ?1.00E-07?? ?64211.86432?? ?12778161?? ?212.96935
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?665.2375
dr-2-10-2?? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526584111?? ?0.470703963?? ?1.869346734?? ?0?? ?0.5?? ?0.472361809?? ?110?? ?0.001833333
0.61933022?? ?0.378788514?? ?5.316582915?? ?0?? ?0.4?? ?0.16080402?? ?47?? ?0.000783333
0.714022291?? ?0.285632622?? ?10.34673367?? ?0?? ?0.3?? ?0.08040201?? ?31?? ?0.000516667
0.806512411?? ?0.192506914?? ?18.5678392?? ?0?? ?0.2?? ?0.16080402?? ?47?? ?0.000783333
0.902097214?? ?0.097758283?? ?39.7839196?? ?0?? ?0.1?? ?0.236180905?? ?47?? ?0.000783333
0.99003051?? ?0.009968748?? ?326.8140704?? ?0?? ?0.01?? ?1.487437186?? ?312?? ?0.0052
0.999000471?? ?1.00E-03?? ?2555.768844?? ?0?? ?0.001?? ?9.201005025?? ?1831?? ?0.030516667
0.999900011?? ?1.00E-04?? ?21902.38693?? ?0?? ?1.00E-04?? ?62.85427136?? ?12508?? ?0.208466667
0.999910009?? ?9.00E-05?? ?23880.13568?? ?0?? ?9.00E-05?? ?63.48743719?? ?12634?? ?0.210566667
0.999920007?? ?8.00E-05?? ?27373.11558?? ?0?? ?8.00E-05?? ?73.70854271?? ?14669?? ?0.244483333
0.999930008?? ?7.00E-05?? ?30471.34171?? ?0?? ?7.00E-05?? ?82.66834171?? ?16466?? ?0.274433333
0.999940006?? ?6.00E-05?? ?33747.86935?? ?0?? ?6.00E-05?? ?89.8241206?? ?17875?? ?0.297916667
0.999950004?? ?5.00E-05?? ?41400.74372?? ?0?? ?5.00E-05?? ?111.1809045?? ?22141?? ?0.369016667
0.999960004?? ?4.00E-05?? ?50904.86935?? ?0?? ?4.00E-05?? ?139.040201?? ?27672?? ?0.4612
0.999970002?? ?3.00E-05?? ?68669.09045?? ?0?? ?3.00E-05?? ?184.2763819?? ?36671?? ?0.611183333
0.999980001?? ?2.00E-05?? ?98491.42211?? ?0?? ?2.00E-05?? ?266.6532663?? ?53096?? ?0.884933333
0.999990001?? ?1.00E-05?? ?193272.4774?? ?0?? ?1.00E-05?? ?524.718593?? ?104451?? ?1.74085
0.999991001?? ?9.00E-06?? ?206907.4774?? ?0?? ?9.00E-06?? ?558.1105528?? ?111064?? ?1.851066667
0.999992001?? ?8.00E-06?? ?237203.201?? ?0?? ?8.00E-06?? ?642.5778894?? ?127873?? ?2.131216667
0.999993?? ?7.00E-06?? ?269616.4372?? ?0?? ?7.00E-06?? ?727.0201005?? ?144692?? ?2.411533333
0.999994?? ?6.00E-06?? ?308451.3015?? ?0?? ?6.00E-06?? ?830.2512563?? ?165220?? ?2.753666667
0.999995?? ?5.00E-06?? ?366383.0905?? ?0?? ?5.00E-06?? ?987.0050251?? ?196414?? ?3.273566667
0.999996?? ?4.00E-06?? ?441795.6482?? ?0?? ?4.00E-06?? ?1193.38191?? ?237499?? ?3.958316667
0.999997?? ?3.00E-06?? ?587062.9196?? ?0?? ?3.00E-06?? ?1594.281407?? ?317262?? ?5.2877
0.999998?? ?2.00E-06?? ?881343.3819?? ?0?? ?2.00E-06?? ?2384.386935?? ?474493?? ?7.908216667
0.999999?? ?1.00E-06?? ?1691667.427?? ?0?? ?1.00E-06?? ?4240.211055?? ?843802?? ?14.06336667
0.9999991?? ?9.00E-07?? ?1861192.327?? ?0?? ?9.00E-07?? ?5102.648241?? ?1015444?? ?16.92406667
0.9999992?? ?8.00E-07?? ?2080246.372?? ?0?? ?8.00E-07?? ?5709.417085?? ?1136174?? ?18.93623333
0.9999993?? ?7.00E-07?? ?2464329.97?? ?0?? ?7.00E-07?? ?6725.005025?? ?1338292?? ?22.30486667
0.9999994?? ?6.00E-07?? ?2925796.92?? ?0?? ?6.00E-07?? ?7890.638191?? ?1570237?? ?26.17061667
0.9999995?? ?5.00E-07?? ?3289760.563?? ?0?? ?5.00E-07?? ?8888.251256?? ?1768762?? ?29.47936667
0.9999996?? ?4.00E-07?? ?4007427.271?? ?0?? ?4.00E-07?? ?10831.90955?? ?2155550?? ?35.92583333
0.9999997?? ?3.00E-07?? ?5245088.296?? ?0?? ?3.00E-07?? ?14310.68342?? ?2847826?? ?47.46376667
0.9999998?? ?2.00E-07?? ?7786895.241?? ?0?? ?2.00E-07?? ?21688.41709?? ?4316003?? ?71.93338333
0.9999999?? ?1.00E-07?? ?1.58E+07?? ?0?? ?1.00E-07?? ?42070.00503?? ?8371946?? ?139.5324333
?? ??? ??? ??? ??? ??? ??? ?
??? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?457.6526833
dr-3-10-3?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.531998108?? ?0.4668063?? ?0.467841829?? ?2.040201005?? ?0?? ?0.5?? ?0.391959799?? ?78?? ?0.0013
0.625916993?? ?0.374693698?? ?0.373937912?? ?5.577889447?? ?0?? ?0.4?? ?0.236180905?? ?78?? ?0.0013
0.717575379?? ?0.283496485?? ?0.282197138?? ?10.4321608?? ?0?? ?0.3?? ?0.155778894?? ?31?? ?0.000516667
0.809919228?? ?0.190881722?? ?0.190713318?? ?18.48241206?? ?0?? ?0.2?? ?0.16080402?? ?47?? ?0.000783333
0.902821459?? ?0.097322419?? ?0.09703025?? ?38.00502513?? ?0?? ?0.1?? ?0.236180905?? ?47?? ?0.000783333
0.990045238?? ?0.009953845?? ?0.009955177?? ?281.0904523?? ?0?? ?0.01?? ?1.567839196?? ?312?? ?0.0052
0.999000849?? ?9.99E-04?? ?9.99E-04?? ?1994.175879?? ?0?? ?0.001?? ?8.261306533?? ?1644?? ?0.0274
0.999900027?? ?1.00E-04?? ?1.00E-04?? ?16359.0402?? ?0?? ?1.00E-04?? ?55.13567839?? ?11020?? ?0.183666667
0.999910024?? ?9.00E-05?? ?9.00E-05?? ?18649.9598?? ?0?? ?9.00E-05?? ?56.92462312?? ?11344?? ?0.189066667
0.999920021?? ?8.00E-05?? ?8.00E-05?? ?20427.95477?? ?0?? ?8.00E-05?? ?60.57286432?? ?12069?? ?0.20115
0.999930016?? ?7.00E-05?? ?7.00E-05?? ?23575.8593?? ?0?? ?7.00E-05?? ?70.74874372?? ?14079?? ?0.23465
0.999940017?? ?6.00E-05?? ?6.00E-05?? ?26453.01508?? ?0?? ?6.00E-05?? ?79.9798995?? ?15931?? ?0.265516667
0.999950013?? ?5.00E-05?? ?5.00E-05?? ?31641.95477?? ?0?? ?5.00E-05?? ?96.27638191?? ?19159?? ?0.319316667
0.999960009?? ?4.00E-05?? ?4.00E-05?? ?38461.94975?? ?0?? ?4.00E-05?? ?116.080402?? ?23100?? ?0.385
0.999970008?? ?3.00E-05?? ?3.00E-05?? ?51233.01508?? ?0?? ?3.00E-05?? ?155.4924623?? ?30943?? ?0.515716667
0.999980005?? ?2.00E-05?? ?2.00E-05?? ?74906.1206?? ?0?? ?2.00E-05?? ?226.8291457?? ?45139?? ?0.752316667
0.999990003?? ?1.00E-05?? ?1.00E-05?? ?144249.7286?? ?0?? ?1.00E-05?? ?437.2713568?? ?87032?? ?1.450533333
0.999991002?? ?9.00E-06?? ?9.00E-06?? ?158850.8543?? ?0?? ?9.00E-06?? ?479.3115578?? ?95383?? ?1.589716667
0.999992002?? ?8.00E-06?? ?8.00E-06?? ?180718.5427?? ?0?? ?8.00E-06?? ?545.5276382?? ?108560?? ?1.809333333
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?202380.0402?? ?0?? ?7.00E-06?? ?622.5527638?? ?123894?? ?2.0649
0.999994001?? ?6.00E-06?? ?6.00E-06?? ?240200?? ?0?? ?6.00E-06?? ?722.5929648?? ?143808?? ?2.3968
0.999995001?? ?5.00E-06?? ?5.00E-06?? ?279138.8844?? ?0?? ?5.00E-06?? ?839.4120603?? ?167050?? ?2.784166667
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?344849.6935?? ?0?? ?4.00E-06?? ?1036.477387?? ?206264?? ?3.437733333
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?459529.0302?? ?0?? ?3.00E-06?? ?1381.035176?? ?274831?? ?4.580516667
0.999998?? ?2.00E-06?? ?2.00E-06?? ?672539.7437?? ?0?? ?2.00E-06?? ?2023.020101?? ?402583?? ?6.709716667
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1292568.874?? ?0?? ?1.00E-06?? ?3888.683417?? ?773855?? ?12.89758333
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?1469246.196?? ?0?? ?9.00E-07?? ?4528.236181?? ?901121?? ?15.01868333
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?1621744.271?? ?0?? ?8.00E-07?? ?5122.98995?? ?1019482?? ?16.99136667
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?1797949.739?? ?0?? ?7.00E-07?? ?5819.79397?? ?1158147?? ?19.30245
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?2091886.859?? ?0?? ?6.00E-07?? ?6800.984925?? ?1353401?? ?22.55668333
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?2467525.844?? ?0?? ?5.00E-07?? ?8110.522613?? ?1613995?? ?26.89991667
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?3216941.045?? ?0?? ?4.00E-07?? ?9953.045226?? ?1980658?? ?33.01096667
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?4254122.518?? ?0?? ?3.00E-07?? ?12569.71859?? ?2501374?? ?41.68956667
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?5986582.417?? ?0?? ?2.00E-07?? ?18259.92462?? ?3633725?? ?60.56208333
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.23E+07?? ?0?? ?1.00E-07?? ?38868.19095?? ?7734773?? ?128.9128833
?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?407.7492833
dr-4-10-4?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?f2[3]?? ?迭代次數(shù)n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.535716861?? ?0.463529881?? ?0.462201609?? ?0.464102577?? ?3?? ?0?? ?0.5?? ?0.547738693?? ?109?? ?0.001816667
0.626382757?? ?0.370585994?? ?0.369941534?? ?0.372025326?? ?7?? ?0?? ?0.4?? ?0.221105528?? ?51?? ?0.00085
0.718509103?? ?0.281085664?? ?0.281285396?? ?0.281171568?? ?12?? ?0?? ?0.3?? ?0.135678392?? ?27?? ?0.00045
0.810595708?? ?0.189874827?? ?0.189742401?? ?0.188944534?? ?20?? ?0?? ?0.2?? ?0.180904523?? ?40?? ?0.000666667
0.903273004?? ?0.096510407?? ?0.096590552?? ?0.096482455?? ?42?? ?0?? ?0.1?? ?0.311557789?? ?62?? ?0.001033333
0.99006448?? ?0.009931742?? ?0.009934172?? ?0.009929011?? ?347?? ?0?? ?0.01?? ?1.768844221?? ?352?? ?0.005866667
0.999001338?? ?9.99E-04?? ?9.99E-04?? ?9.99E-04?? ?2942?? ?0?? ?0.001?? ?8.376884422?? ?1668?? ?0.0278
0.99990005?? ?1.00E-04?? ?9.99E-05?? ?9.99E-05?? ?23884?? ?0?? ?1.00E-04?? ?51.49748744?? ?10254?? ?0.1709
0.999910042?? ?9.00E-05?? ?9.00E-05?? ?9.00E-05?? ?37315?? ?0?? ?9.00E-05?? ?54.46231156?? ?10858?? ?0.180966667
0.999920041?? ?8.00E-05?? ?8.00E-05?? ?8.00E-05?? ?26333?? ?0?? ?8.00E-05?? ?60.04020101?? ?11964?? ?0.1994
0.99993003?? ?7.00E-05?? ?7.00E-05?? ?7.00E-05?? ?46405?? ?0?? ?7.00E-05?? ?67.23115578?? ?13387?? ?0.223116667
0.999940028?? ?6.00E-05?? ?6.00E-05?? ?6.00E-05?? ?43844?? ?0?? ?6.00E-05?? ?80.77386935?? ?16075?? ?0.267916667
0.999950023?? ?5.00E-05?? ?5.00E-05?? ?5.00E-05?? ?57098?? ?0?? ?5.00E-05?? ?94.61809045?? ?18837?? ?0.31395
0.999960017?? ?4.00E-05?? ?4.00E-05?? ?4.00E-05?? ?63706?? ?0?? ?4.00E-05?? ?117.3819095?? ?23359?? ?0.389316667
0.999970013?? ?3.00E-05?? ?3.00E-05?? ?3.00E-05?? ?102785?? ?0?? ?3.00E-05?? ?152.3819095?? ?30332?? ?0.505533333
0.999980009?? ?2.00E-05?? ?2.00E-05?? ?2.00E-05?? ?131495?? ?0?? ?2.00E-05?? ?223.3517588?? ?44456?? ?0.740933333
0.999990004?? ?1.00E-05?? ?1.00E-05?? ?1.00E-05?? ?203355?? ?0?? ?1.00E-05?? ?432.8542714?? ?86146?? ?1.435766667
0.999991003?? ?9.00E-06?? ?9.00E-06?? ?9.00E-06?? ?296829?? ?0?? ?9.00E-06?? ?485.1005025?? ?96535?? ?1.608916667
0.999992003?? ?8.00E-06?? ?8.00E-06?? ?8.00E-06?? ?363607?? ?0?? ?8.00E-06?? ?553.4522613?? ?110137?? ?1.835616667
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?7.00E-06?? ?421455?? ?0?? ?7.00E-06?? ?624.6884422?? ?124313?? ?2.071883333
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?6.00E-06?? ?405253?? ?0?? ?6.00E-06?? ?720.0854271?? ?143305?? ?2.388416667
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?5.00E-06?? ?438198?? ?0?? ?5.00E-06?? ?846.7085427?? ?168511?? ?2.808516667
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?4.00E-06?? ?733902?? ?0?? ?4.00E-06?? ?1062.241206?? ?211386?? ?3.5231
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?3.00E-06?? ?747879?? ?0?? ?3.00E-06?? ?1375.070352?? ?273639?? ?4.56065
0.999998001?? ?2.00E-06?? ?2.00E-06?? ?2.00E-06?? ?1245116?? ?0?? ?2.00E-06?? ?2037.321608?? ?405442?? ?6.757366667
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1.00E-06?? ?2046819?? ?0?? ?1.00E-06?? ?3900.668342?? ?776234?? ?12.93723333
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?9.00E-07?? ?2010564?? ?0?? ?9.00E-07?? ?4260.743719?? ?847889?? ?14.13148333
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?8.00E-07?? ?2166817?? ?0?? ?8.00E-07?? ?4823.21608?? ?959820?? ?15.997
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?7.00E-07?? ?3092601?? ?0?? ?7.00E-07?? ?5536.517588?? ?1101799?? ?18.36331667
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?6.00E-07?? ?2729326?? ?0?? ?6.00E-07?? ?6414.592965?? ?1276520?? ?21.27533333
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?5.00E-07?? ?3698517?? ?0?? ?5.00E-07?? ?7769.160804?? ?1546067?? ?25.76778333
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?4.00E-07?? ?5727957?? ?0?? ?4.00E-07?? ?9313.638191?? ?1853418?? ?30.8903
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3.00E-07?? ?6026219?? ?0?? ?3.00E-07?? ?12582.55276?? ?2503943?? ?41.73238333
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?2.00E-07?? ?1.07E+07?? ?0?? ?2.00E-07?? ?18166.89447?? ?3615217?? ?60.25361667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.00E-07?? ?2.71E+07?? ?0?? ?1.00E-07?? ?36836.72864?? ?7330514?? ?122.1752333
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?393.5444333
本次實驗原始數(shù)據(jù)比較多有感興趣的朋友可以在我的資源里下載
?
總結
以上是生活随笔為你收集整理的输入对5层网络迭代次数的影响的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 华硕x540n怎么u盘启动 华硕x540
- 下一篇: 安装了双系统怎么启动不了 双系统安装后无