UA MATH564 概率论 QE练习题1
UA MATH564 概率論 QE練習題1
- 第一題
- 第二題
- 第三題
2014年1月理論的1-3題。
第一題
Part (a)
Marginal density of YYY is
fY(y)=∫?∞∞f(x,y)dx=∫?∞∞e?yx2/22π/yye?ydx=ye?y2π/y∫?∞∞e?yx2/2dxf_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx = \int_{-\infty}^{\infty} \frac{e^{-yx^2/2}}{\sqrt{2\pi/y}}ye^{-y}dx = \frac{ye^{-y}}{\sqrt{2\pi/y}} \int_{-\infty}^{\infty} e^{-yx^2/2}dxfY?(y)=∫?∞∞?f(x,y)dx=∫?∞∞?2π/y?e?yx2/2?ye?ydx=2π/y?ye?y?∫?∞∞?e?yx2/2dx
Recall the density of normal distribution N(0,1/y)N(0,1/y)N(0,1/y),
∫?∞∞12π/ye?yx2/2dx=1?∫?∞∞e?yx2/2dx=2π/y\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi /y}}e^{-yx^2/2}dx = 1 \Rightarrow \int_{-\infty}^{\infty} e^{-yx^2/2}dx=\sqrt{2\pi /y}∫?∞∞?2π/y?1?e?yx2/2dx=1?∫?∞∞?e?yx2/2dx=2π/y?
So
fY(y)=ye?y2π/y∫?∞∞e?yx2/2dx=ye?y2π/y2π/y=ye?y,y>0f_Y(y) =\frac{ye^{-y}}{\sqrt{2\pi/y}} \int_{-\infty}^{\infty} e^{-yx^2/2}dx = \frac{ye^{-y}}{\sqrt{2\pi/y}} \sqrt{2\pi /y} = ye^{-y},y>0 fY?(y)=2π/y?ye?y?∫?∞∞?e?yx2/2dx=2π/y?ye?y?2π/y?=ye?y,y>0
Conditional density of XXX given YYY is
f(x∣y)=f(x,y)fY(y)=e?yx2/22π/yye?yye?y=e?yx2/22π/y,x∈Rf(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{\frac{e^{-yx^2/2}}{\sqrt{2\pi/y}}ye^{-y}}{ye^{-y}} = \frac{e^{-yx^2/2}}{\sqrt{2\pi/y}},x\in \mathbb{R}f(x∣y)=fY?(y)f(x,y)?=ye?y2π/y?e?yx2/2?ye?y?=2π/y?e?yx2/2?,x∈R
Part (b)
X∣Y~N(0,1/y)X|Y \sim N(0,1/y)X∣Y~N(0,1/y), so E[X∣Y]=0E[X|Y]=0E[X∣Y]=0
Part (c )
X∣Y~N(0,1/y)X|Y \sim N(0,1/y)X∣Y~N(0,1/y), so Var[X∣Y]=1YVar[X|Y]=\frac{1}{Y}Var[X∣Y]=Y1?
Part (d)
Var(X)=E[Var(X∣Y)]+Var[E(X∣Y)]=E[1/Y]+0=∫0∞1yye?ydy=1Var(X) = E[Var(X|Y)] + Var[E(X|Y)] = E[1/Y] + 0 = \int_{0}^{\infty} \frac{1}{y}ye^{-y}dy = 1Var(X)=E[Var(X∣Y)]+Var[E(X∣Y)]=E[1/Y]+0=∫0∞?y1?ye?ydy=1
第二題
Part (a)
Let U=X+Y,V=X/YU = X+Y,V = X/YU=X+Y,V=X/Y, and then Y=UV+1Y = \frac{U}{V+1}Y=V+1U?. X=UVV+1X = \frac{UV}{V+1}X=V+1UV?,
?(X,Y)?(U,V)=∣VV+11V+1U(V+1)2?U(V+1)2∣=?U(V+1)2\frac{\partial (X,Y)}{\partial (U,V)} = \left| \begin{matrix} \frac{V}{V+1} & \frac{1}{V+1} \\ \frac{U}{(V+1)^2} & -\frac{U}{(V+1)^2}\end{matrix} \right| = -\frac{U}{(V+1)^2}?(U,V)?(X,Y)?=∣∣∣∣∣?V+1V?(V+1)2U??V+11??(V+1)2U??∣∣∣∣∣?=?(V+1)2U?
Joint density of X,YX,YX,Y is
f(x,y)=fX(x)fY(y)=1λ2e?1λ(x+y),x>0,y>0f(x,y) = f_X(x)f_Y(y) = \frac{1}{\lambda^2}e^{-\frac{1}{\lambda}(x+y)},x>0,y>0f(x,y)=fX?(x)fY?(y)=λ21?e?λ1?(x+y),x>0,y>0
So joint density of U,VU,VU,V is
f(u,v)=f(x(u,v),y(u,v))∣?(X,Y)?(U,V)∣=uλ2(v+1)2e?uλ,u>0,v>0f(u,v) = f(x(u,v),y(u,v)) \left| \frac{\partial (X,Y)}{\partial (U,V)} \right| = \frac{u}{\lambda^2(v+1)^2}e^{-\frac{u}{\lambda}},u>0,v>0f(u,v)=f(x(u,v),y(u,v))∣∣∣∣??(U,V)?(X,Y)?∣∣∣∣?=λ2(v+1)2u?e?λu?,u>0,v>0
By additivity of Gamma distribution, U~Γ(2,λ)U \sim \Gamma(2,\lambda)U~Γ(2,λ),
fU(u)=ue?u/λΓ(2)λ2=uλ2e?uλf_U(u) = \frac{ ue^{-u/\lambda}}{\Gamma(2)\lambda^2} = \frac{u}{\lambda^2}e^{-\frac{u}{\lambda}}fU?(u)=Γ(2)λ2ue?u/λ?=λ2u?e?λu?
Notice f(v∣u)=f(u,v)fU(u)=1(v+1)2,v>0f(v|u) = \frac{f(u,v)}{f_U(u)} = \frac{1}{(v+1)^2},v>0f(v∣u)=fU?(u)f(u,v)?=(v+1)21?,v>0
which is independent of uuu, so X+YX+YX+Y and X/YX/YX/Y are indepdendent. Check
∫0∞1(v+1)2dv=?1v+1∣0∞=1\int_{0}^{\infty} \frac{1}{(v+1)^2}dv = -\frac{1}{v+1}|_0^{\infty} = 1∫0∞?(v+1)21?dv=?v+11?∣0∞?=1
So marginal density of VVV is
f(v)=1(v+1)2,v>0f(v) = \frac{1}{(v+1)^2},v>0f(v)=(v+1)21?,v>0
Part (b)
Notice Z=XX+Y=1?YX+Y=1?XX+YYX=1?ZV?Z=V1+V,Z∈(0,1)Z = \frac{X}{X+Y} = 1 - \frac{Y}{X+Y} = 1 - \frac{X}{X+Y} \frac{Y}{X}= 1 - \frac{Z}{V} \Rightarrow Z = \frac{V}{1+V}, Z \in (0,1)Z=X+YX?=1?X+YY?=1?X+YX?XY?=1?VZ??Z=1+VV?,Z∈(0,1),
P(Z≤z)=P(V1+V≤z)=P(V≤z1?z)=∫0z1?z1(v+1)2dv=?1v+1∣0z1?z=zP(Z \le z) = P(\frac{V}{1+V} \le z) = P(V \le \frac{z}{1-z}) \\=\int_{0}^{\frac{z}{1-z}} \frac{1}{(v+1)^2}dv = -\frac{1}{v+1}|_0^{\frac{z}{1-z}} = zP(Z≤z)=P(1+VV?≤z)=P(V≤1?zz?)=∫01?zz??(v+1)21?dv=?v+11?∣01?zz??=z
第三題
Yn+1=λYn+Xn+1=λ(λYn?1+Xn)+Xn+1=λ(λ(λYn?2+Xn?1)+Xn)+Xn+1=?=λn+1Y0+∑i=1n+1λn+1?iXiY_{n+1} = \lambda Y _n + X_{n+1} = \lambda(\lambda Y_{n-1} + X_n) + X_{n+1} \\= \lambda(\lambda (\lambda Y_{n-2} + X_{n-1})+ X_n) + X_{n+1} = \cdots =\lambda^{n+1} Y_0 + \sum_{i=1}^{n+1} \lambda^{n+1-i}X_{i}Yn+1?=λYn?+Xn+1?=λ(λYn?1?+Xn?)+Xn+1?=λ(λ(λYn?2?+Xn?1?)+Xn?)+Xn+1?=?=λn+1Y0?+i=1∑n+1?λn+1?iXi?
Since Xi~iidN(μ,σ2)X_i \sim_{iid} N(\mu,\sigma^2)Xi?~iid?N(μ,σ2),
EYn+1=λn+1x+μ∑i=1n+1λn+1?i=λn+1x+μ(1?λn+1)1?λ→μ1?λ,asn→∞Var(Yn+1)=∑i=1n+1λ2(n+1?i)σ2=σ2(1?λ2(n+1))1?λ2→σ21?λ2,asn→∞EY_{n+1} =\lambda^{n+1} x + \mu \sum_{i=1}^{n+1} \lambda^{n+1-i} = \lambda^{n+1} x + \frac{\mu(1-\lambda^{n+1})}{1-\lambda} \to \frac{\mu}{1-\lambda},\ as\ n \to \infty \\ Var(Y_{n+1}) = \sum_{i=1}^{n+1} \lambda^{2(n+1-i)} \sigma^2 = \frac{\sigma^2(1-\lambda^{2(n+1)})}{1-\lambda^2} \to \frac{\sigma^2}{1-\lambda^2},\ as\ n \to \inftyEYn+1?=λn+1x+μi=1∑n+1?λn+1?i=λn+1x+1?λμ(1?λn+1)?→1?λμ?,?as?n→∞Var(Yn+1?)=i=1∑n+1?λ2(n+1?i)σ2=1?λ2σ2(1?λ2(n+1))?→1?λ2σ2?,?as?n→∞
Above, Yn→dN(μ1?λ,σ21?λ2)Y_n \to_d N( \frac{\mu}{1-\lambda},\frac{\sigma^2}{1-\lambda^2})Yn?→d?N(1?λμ?,1?λ2σ2?)
總結
以上是生活随笔為你收集整理的UA MATH564 概率论 QE练习题1的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH571B 试验设计 QE练
- 下一篇: 脑与认知科学1 脑的基本结构下