组合恒等式2 五个基本的组合恒等式 更复杂的技巧与例题
組合恒等式2 五個基本的組合恒等式 復(fù)雜的例題
- 使用兩個數(shù)列的遞推關(guān)系證明恒等式
- 證明相反數(shù)與自身相等以說明恒等式為0
- 組合數(shù)倒數(shù)的裂項
這一講繼續(xù)討論用五個基本的組合恒等式證明組合恒等式的方法。先復(fù)習(xí)一下基本恒等式:
等式一 組合數(shù)的對稱性
Cnk=Cnn?kC_n^k = C_n^{n-k}Cnk?=Cnn?k?
等式二 楊輝三角
Cnk=Cn?1k+Cn?1k?1C_n^k = C_{n-1}^k + C_{n-1}^{k-1}Cnk?=Cn?1k?+Cn?1k?1?
等式三 多項式系數(shù)的唯一性
CnkCkm=CnmCn?mk?m=Cnk?mCn?k+mm,m≤k≤nC_n^kC_k^m = C_n^{m}C_{n-m}^{k-m} = C_n^{k-m}C_{n-k+m}^m,m\le k \le nCnk?Ckm?=Cnm?Cn?mk?m?=Cnk?m?Cn?k+mm?,m≤k≤n
特例,如果m=1m=1m=1,
kCnk=nCn?1k?1kC_n^k = nC_{n-1}^{k-1}kCnk?=nCn?1k?1?
等式四 二項式定理
(x+y)n=∑i=0nCnixiyn?i(x+y)^n = \sum_{i=0}^n C_n^ix^iy^{n-i}(x+y)n=i=0∑n?Cni?xiyn?i
特例,如果x=y=1x=y=1x=y=1,則
∑i=0nCni=2n\sum_{i=0}^n C_n^i = 2^ni=0∑n?Cni?=2n
如果x=1,y=?1x=1,y=-1x=1,y=?1,則
∑i=0n(?1)iCni=0\sum_{i=0}^n (-1)^iC_n^i = 0i=0∑n?(?1)iCni?=0
使用兩個數(shù)列的遞推關(guān)系證明恒等式
上一講介紹的例5和例6中,定義待證的和式為一個數(shù)列,用等式二裂項之和得到的兩項都可以表示為這個數(shù)列的某種函數(shù),從而得到這個數(shù)列的遞推關(guān)系(一般是一階遞推)。但是當(dāng)裂項得到的兩項中有一項不能寫成數(shù)列的函數(shù)時,我們可以再定義一個新的數(shù)列,然后對新的數(shù)列再用等式二裂項(一般可以得到第一個數(shù)列的二階遞推)。
例1 ∑k=0n(?1)k22n?2kC2n?k+1k=n+1\sum_{k=0}^n (-1)^k 2^{2n-2k}C_{2n-k+1}^k = n+1∑k=0n?(?1)k22n?2kC2n?k+1k?=n+1
證明
定義an=∑k=0n(?1)k22n?2kC2n?k+1ka_n = \sum_{k=0}^n (-1)^k 2^{2n-2k}C_{2n-k+1}^kan?=∑k=0n?(?1)k22n?2kC2n?k+1k?,用等式二裂項,
an=22n+∑k=1n(?1)k22n?2k(C2n?kk+C2n?kk?1)=∑k=0n(?1)k22n?2kC2n?kk?∑j=0n?1(?1)j22n?2jC2(n?1)?j+1ja_n = 2^{2n}+ \sum_{k=1}^{n} (-1)^k 2^{2n-2k}(C_{2n-k}^k + C_{2n-k}^{k-1}) \\ = \sum_{k=0}^{n} (-1)^k 2^{2n-2k}C_{2n-k}^k - \sum_{j=0}^{n-1} (-1)^j 2^{2n-2j} C_{2(n-1)-j+1}^{j}an?=22n+k=1∑n?(?1)k22n?2k(C2n?kk?+C2n?kk?1?)=k=0∑n?(?1)k22n?2kC2n?kk??j=0∑n?1?(?1)j22n?2jC2(n?1)?j+1j?
定義bn=∑k=0n(?1)k22n?2kC2n?kkb_{n} = \sum_{k=0}^{n} (-1)^k 2^{2n-2k}C_{2n-k}^kbn?=∑k=0n?(?1)k22n?2kC2n?kk?,從而
bn=an+an?1b_{n} = a_{n} + a_{n-1}bn?=an?+an?1?
用等式二對bnb_nbn?裂項,
bn=22n+∑k=1n?1(?1)k22n?2k(C2n?k?1k+C2n?k?1k?1)+(?1)n=∑k=0n?1(?1)k22n?2kC2n?k?1k?22∑j=0n?1(?1)j22n?2jC2(n?1)?jj=4an?1?bn?1b_{n} = 2^{2n} + \sum_{k=1}^{n-1} (-1)^k 2^{2n-2k}(C_{2n-k-1}^k + C_{2n-k-1}^{k-1}) +(-1)^n\\ = \sum_{k=0}^{n-1}(-1)^k 2^{2n-2k}C_{2n-k-1}^k - 2^2 \sum_{j=0}^{n-1} (-1)^j 2^{2n-2j} C_{2(n-1)-j}^{j} \\ =4a_{n-1} - b_{n-1}bn?=22n+k=1∑n?1?(?1)k22n?2k(C2n?k?1k?+C2n?k?1k?1?)+(?1)n=k=0∑n?1?(?1)k22n?2kC2n?k?1k??22j=0∑n?1?(?1)j22n?2jC2(n?1)?jj?=4an?1??bn?1?
結(jié)合這兩個遞推式可得ana_nan?的二階線性遞推式
an?an?1=an?1?an?2=1an=a0+(a1?a0)+?+(an?an?1)=1+na_{n} - a_{n-1} = a_{n-1} - a_{n-2} = 1 \\ a_n = a_0 + (a_1 - a_0) + \cdots + (a_n - a_{n-1}) = 1 + nan??an?1?=an?1??an?2?=1an?=a0?+(a1??a0?)+?+(an??an?1?)=1+n
證明相反數(shù)與自身相等以說明恒等式為0
有一些組合恒等式是恒等于0的,我們就可以嘗試通過證明它與它的相反數(shù)相等來說明它的確恒等于0。
例2 ∑k=02n?1(?1)k+1(k+1)(C2nk)?1=0\sum_{k=0}^{2n-1}(-1)^{k+1}(k+1)(C_{2n}^k)^{-1}=0∑k=02n?1?(?1)k+1(k+1)(C2nk?)?1=0
證明
定義an=∑k=02n?1(?1)k+1(k+1)(C2nk)?1a_n=\sum_{k=0}^{2n-1}(-1)^{k+1}(k+1)(C_{2n}^k)^{-1}an?=∑k=02n?1?(?1)k+1(k+1)(C2nk?)?1,考慮ana_nan?的相反數(shù),
?an=∑k=02n?1(?1)k(k+1)(C2nk)?1=∑k=02n?1(?1)2n?k(2n?k)(C2n2n?k?1)?1-a_n = \sum_{k=0}^{2n-1}(-1)^{k}(k+1)(C_{2n}^k)^{-1}=\sum_{k=0}^{2n-1}(-1)^{2n-k}(2n-k)(C_{2n}^{2n-k-1})^{-1}?an?=k=0∑2n?1?(?1)k(k+1)(C2nk?)?1=k=0∑2n?1?(?1)2n?k(2n?k)(C2n2n?k?1?)?1
ana_nan?與?an-a_n?an?的區(qū)別僅僅只是對這2n2n2n項的求和順序不一樣,做指標(biāo)變換j=2n?k?1j=2n-k-1j=2n?k?1就會發(fā)現(xiàn)an=?ana_n=-a_nan?=?an?,所以an=0a_n=0an?=0。這里用到了兩個有趣的對稱性,首先是k+(2n?k)=2nk+(2n-k)=2nk+(2n?k)=2n偶數(shù),則kkk與2n?k2n-k2n?k同為偶數(shù)或者同為奇數(shù),所以(?1)k=(?1)2n?k(-1)^k=(-1)^{2n-k}(?1)k=(?1)2n?k,另外就是
(k+1)(C2nk)?1=(2n?k)(C2n2n?k?1)?1(k+1)(C_{2n}^k)^{-1}=(2n-k)(C_{2n}^{2n-k-1})^{-1}(k+1)(C2nk?)?1=(2n?k)(C2n2n?k?1?)?1
用一次等式三特例,再用一次等式一,然后再用一次等式三特例,
(k+1)(C2nk)?1=(2n+1)(C2n+1k+1)?1=(2n+1)(C2n+12n?k)?1=(2n?k)(C2n2n?k?1)?1(k+1)(C_{2n}^k)^{-1}=(2n+1)(C_{2n+1}^{k+1})^{-1} = (2n+1)(C_{2n+1}^{2n-k})^{-1}=(2n-k)(C_{2n}^{2n-k-1})^{-1}(k+1)(C2nk?)?1=(2n+1)(C2n+1k+1?)?1=(2n+1)(C2n+12n?k?)?1=(2n?k)(C2n2n?k?1?)?1
評注
1、這種證明方法的邏輯其實是
∑i=1nf(i)=∑i=1nf(n?i)=∑i=1n?f(i)\sum_{i=1}^nf(i) = \sum_{i=1}^nf(n-i) = \sum_{i=1}^n-f(i)i=1∑n?f(i)=i=1∑n?f(n?i)=i=1∑n??f(i)
一個可能的充分條件是下面這種關(guān)系
?f(i)=f(n?i)-f(i)=f(n-i)?f(i)=f(n?i)
幾何解釋就是(i,f(i))(i,f(i))(i,f(i))與(n?i,f(n?i))(n-i,f(n-i))(n?i,f(n?i))關(guān)于(n2,f(n2))(\frac{n}{2},f(\frac{n}{2}))(2n?,f(2n?))中心對稱。
2、嘗試對組合數(shù)用一次等式三特例,再用一次等式一,然后再用一次等式三特例,
Cnk=nkCn?1k?1=nkCn?1n?k=nkn?k+1nCnn?k+1?kCnk=(n?k+1)Cnn?k+1=[n?(k?1)]Cnk?1Cnk=k+1n+1Cn+1k+1=k+1n+1Cn+1n?k=k+1n+1n+1n?kCnn?k?1?(n?k)Cnk=(k+1)Cnn?k?1=(k+1)Cnk+1C_n^k = \frac{n}{k}C_{n-1}^{k-1}=\frac{n}{k}C_{n-1}^{n-k}=\frac{n}{k} \frac{n-k+1}{n}C_{n}^{n-k+1} \\ \Rightarrow kC_n^k = (n-k+1)C_{n}^{n-k+1} = [n-(k-1)]C_n^{k-1} \\ C_n^k = \frac{k+1}{n+1}C_{n+1}^{k+1}=\frac{k+1}{n+1}C_{n+1}^{n-k}=\frac{k+1}{n+1} \frac{n+1}{n-k}C_{n}^{n-k-1} \\ \Rightarrow (n-k)C_n^k = (k+1)C_{n}^{n-k-1} = (k+1)C_n^{k+1}Cnk?=kn?Cn?1k?1?=kn?Cn?1n?k?=kn?nn?k+1?Cnn?k+1??kCnk?=(n?k+1)Cnn?k+1?=[n?(k?1)]Cnk?1?Cnk?=n+1k+1?Cn+1k+1?=n+1k+1?Cn+1n?k?=n+1k+1?n?kn+1?Cnn?k?1??(n?k)Cnk?=(k+1)Cnn?k?1?=(k+1)Cnk+1?
這些式子提供對組合數(shù)關(guān)于kkk的遞推關(guān)系,等式三特例提供的是關(guān)于n,kn,kn,k同時增減的遞推關(guān)系。
3、等式三的倒數(shù)依然成立,
(CnkCkm)?1=(CnmCn?mk?m)?1=(Cnk?mCn?k+mm)?1,m≤k≤n(C_n^kC_k^m)^{-1} = (C_n^{m}C_{n-m}^{k-m})^{-1} = (C_n^{k-m}C_{n-k+m}^m)^{-1},m\le k \le n(Cnk?Ckm?)?1=(Cnm?Cn?mk?m?)?1=(Cnk?m?Cn?k+mm?)?1,m≤k≤n
假設(shè)m=1m=1m=1,則
(kCnk)?1=(nCn?1k?1)?1?nCnk=kCn?1k?1(kC_n^k)^{-1} = (nC_{n-1}^{k-1})^{-1} \Leftrightarrow \frac{n}{C_n^k} = \frac{k}{C_{n-1}^{k-1}}(kCnk?)?1=(nCn?1k?1?)?1?Cnk?n?=Cn?1k?1?k?
組合數(shù)倒數(shù)的裂項
既然等式三可以推廣到組合數(shù)的倒數(shù)的形式,等式二也可以嘗試推廣。想象一下楊輝三角中所有的數(shù)字都變成它的倒數(shù),那么肯定是相鄰位置從下層到上層數(shù)字逐漸變小,要把(Cnk)?1(C_n^k)^{-1}(Cnk?)?1拆成兩項,肯定需要找下層與之相鄰的兩個元素,也就是(Cn+1k)?1(C_{n+1}^k)^{-1}(Cn+1k?)?1和(Cn+1k+1)?1(C_{n+1}^{k+1})^{-1}(Cn+1k+1?)?1,計算這兩項的和,嘗試湊出(Cnk)?1(C_n^k)^{-1}(Cnk?)?1
(Cn+1k)?1+(Cn+1k+1)?1=k!(n+1?k)!+(k+1)!(n?k)!(n+1)!=k!(n?k)!n!(n+1?k)+(k+1)n+1=n+2n+1(Cnk)?1(C_{n+1}^k)^{-1}+(C_{n+1}^{k+1})^{-1} = \frac{k!(n+1-k)!+(k+1)!(n-k)!}{(n+1)!} \\ = \frac{k!(n-k)!}{n!}\frac{(n+1-k)+(k+1)}{n+1} = \frac{n+2}{n+1}(C_n^k)^{-1}(Cn+1k?)?1+(Cn+1k+1?)?1=(n+1)!k!(n+1?k)!+(k+1)!(n?k)!?=n!k!(n?k)!?n+1(n+1?k)+(k+1)?=n+1n+2?(Cnk?)?1
所以,組合數(shù)的倒數(shù)的裂項方式為
1Cnk=n+1n+2(1Cn+1k+1Cn+1k+1)\frac{1}{C_n^k} = \frac{n+1}{n+2}\left( \frac{1}{C_{n+1}^k} + \frac{1}{C_{n+1}^{k+1}} \right)Cnk?1?=n+2n+1?(Cn+1k?1?+Cn+1k+1?1?)
例3 ∑k=12n?1(?1)k?1(C2nk)?1=1n+1\sum_{k=1}^{2n-1}(-1)^{k-1}(C_{2n}^k)^{-1} = \frac{1}{n+1}∑k=12n?1?(?1)k?1(C2nk?)?1=n+11?
證明
定義an=∑k=12n?1(?1)k?1(C2nk)?1a_n=\sum_{k=1}^{2n-1}(-1)^{k-1}(C_{2n}^k)^{-1}an?=∑k=12n?1?(?1)k?1(C2nk?)?1,用上面的倒數(shù)的裂項公式,
∑k=12n?1(?1)k?11C2nk=∑k=12n?1(?1)k?12n+12n+2(1C2n+1k+1C2n+1k+1)=2n+12n+2(1C2n+11+1C2n+12?1C2n+12?1C2n+13+1C2n+13?)=2n+12n+2(12n+1+12n+1)=1n+1\sum_{k=1}^{2n-1}(-1)^{k-1}\frac{1}{C_{2n}^k} = \sum_{k=1}^{2n-1}(-1)^{k-1}\frac{2n+1}{2n+2}\left( \frac{1}{C_{2n+1}^k} + \frac{1}{C_{2n+1}^{k+1}} \right) \\ = \frac{2n+1}{2n+2} \left( \frac{1}{C_{2n+1}^1} + \frac{1}{C_{2n+1}^{2}} -\frac{1}{C_{2n+1}^{2}} - \frac{1}{C_{2n+1}^{3}} + \frac{1}{C_{2n+1}^{3}} \cdots \right) \\ = \frac{2n+1}{2n+2} \left( \frac{1}{2n+1} + \frac{1}{2n+1} \right) = \frac{1}{n+1}k=1∑2n?1?(?1)k?1C2nk?1?=k=1∑2n?1?(?1)k?12n+22n+1?(C2n+1k?1?+C2n+1k+1?1?)=2n+22n+1?(C2n+11?1?+C2n+12?1??C2n+12?1??C2n+13?1?+C2n+13?1??)=2n+22n+1?(2n+11?+2n+11?)=n+11?
總結(jié)
以上是生活随笔為你收集整理的组合恒等式2 五个基本的组合恒等式 更复杂的技巧与例题的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH566 用Basu定理证明
- 下一篇: 组合恒等式3 母函数与形式幂级数的运算