UA OPTI501 电磁波 求解Maxwell方程组的波动方程方法
UA OPTI501 電磁波 求解Maxwell方程組的波動(dòng)方程方法
- 標(biāo)量勢(shì)滿足的2階PDE
- 矢量勢(shì)滿足的2階PDE
- Laplace算子的含義
- 標(biāo)量勢(shì)與矢量勢(shì)的平面波解
Maxwell方程組:
??D=ρfree?×H=Jfree+??tD?×E=???tB??B=0\nabla \cdot \textbf D = \rho_{free} \\ \nabla \times \textbf H=\textbf J_{free}+\frac{\partial}{\partial t}\textbf D \\ \nabla \times \textbf E=-\frac{\partial}{\partial t}\textbf B \\ \nabla \cdot \textbf B=0??D=ρfree??×H=Jfree?+?t??D?×E=??t??B??B=0
用Electric bounded charge and current簡(jiǎn)化Macroscopic方程,考慮D\textbf DD與B\textbf BB的表達(dá)式
D=?0E+PH=B?Mμ0\textbf D=\epsilon_0 \textbf E + \textbf P \\ \textbf H = \frac{\textbf B - \textbf M}{\mu_0}D=?0?E+PH=μ0?B?M?引入electric bounded charge density ρbound(e)\rho^{(e)}_{bound}ρbound(e)?與electric bounded current density Jbound(e)\textbf J^{(e)}_{bound}Jbound(e)?,定義總電荷密度與總電流密度為
ρtotal(e)=ρfree+ρbound(e)=ρfree???PJtotal(e)=Jfree+Jbound(e)=Jfree+??tP+1μ0?×M\rho^{(e)}_{total} =\rho_{free}+ \rho_{bound}^{(e)} = \rho_{free} - \nabla \cdot \textbf P \\ \textbf J^{(e)}_{total}=\textbf J_{free}+ \textbf J^{(e)}_{bound} =\textbf J_{free} + \frac{\partial }{\partial t} \textbf P + \frac{1}{\mu_0} \nabla \times \textbf M ρtotal(e)?=ρfree?+ρbound(e)?=ρfree????PJtotal(e)?=Jfree?+Jbound(e)?=Jfree?+?t??P+μ0?1??×M
由此可以得到用Electric bounded charge and current簡(jiǎn)化的Macroscopic方程:
??E=ρtotal(e)?0?×B=μ0Jtotal(e)+μ0?0??tE?×E=???tB??B=0\nabla \cdot \textbf E =\frac{\rho_{total}^{(e)}}{\epsilon_0} \\ \nabla \times \textbf B=\mu_0 \textbf J^{(e)}_{total}+\mu_0 \epsilon_0\frac{\partial}{\partial t}\textbf E \\ \nabla \times \textbf E=-\frac{\partial}{\partial t}\textbf B \\ \nabla \cdot \textbf B=0??E=?0?ρtotal(e)???×B=μ0?Jtotal(e)?+μ0??0??t??E?×E=??t??B??B=0
要進(jìn)一步簡(jiǎn)化這個(gè)方程,可以引入標(biāo)量勢(shì)ψ\psiψ與矢量勢(shì)A\textbf AA,
B=?×AE=??ψ???tA\textbf B = \nabla \times \textbf A \\ \textbf E = -\nabla \psi - \frac{\partial}{\partial t}\textbf AB=?×AE=??ψ??t??A
下面我們分別討論:
標(biāo)量勢(shì)滿足的2階PDE
考慮Maxwell方程1,??E=ρtotal(e)?0\nabla \cdot \textbf E =\frac{\rho_{total}^{(e)}}{\epsilon_0}??E=?0?ρtotal(e)??,代入E=??ψ???tA\textbf E = -\nabla \psi - \frac{\partial}{\partial t}\textbf AE=??ψ??t??A,
??0???ψ??0??t?A=ρtotal(e)-\epsilon_0 \nabla \cdot \nabla \psi -\epsilon_0 \frac{\partial}{\partial t}\nabla \textbf A = \rho_{total}^{(e)}??0????ψ??0??t???A=ρtotal(e)?
記Δ=?2=???\Delta=\nabla^2=\nabla \cdot \nablaΔ=?2=???,這個(gè)算子被稱為L(zhǎng)aplace算子;在Lorenz Gauge下,??A+1c2??tψ=0\nabla \cdot \textbf A+\frac{1}{c^2}\frac{\partial}{\partial t}\psi=0??A+c21??t??ψ=0,代入上述方程,
Δψ?1c2?2?t2ψ=?1?0ρtotal(e)\Delta \psi -\frac{1}{c^2} \frac{\partial^2 }{\partial t^2} \psi=-\frac{1}{\epsilon_0}\rho_{total}^{(e)}Δψ?c21??t2?2?ψ=??0?1?ρtotal(e)?
這個(gè)方程是一個(gè)典型的波動(dòng)方程,它描述的是以ρtotal(e)\rho_{total}^{(e)}ρtotal(e)?為源的波ψ\psiψ的傳播規(guī)律,其中ccc是波的傳播速度。用ψ\psiψ與ρtotal(e)\rho_{total}^{(e)}ρtotal(e)?的Fourier逆變換替換,
(Δ?1c2?2?t2)F?1[ψ]=?1?0F?1[ρtotal(e)]\left(\Delta -\frac{1}{c^2} \frac{\partial^2 }{\partial t^2} \right)\mathcal{F}^{-1}[\psi]=-\frac{1}{\epsilon_0}\mathcal{F}^{-1}[\rho_{total}^{(e)}](Δ?c21??t2?2?)F?1[ψ]=??0?1?F?1[ρtotal(e)?]
假設(shè)這個(gè)方程解的形式為平面波,則
(k2?w2c2)ψ(k,w)=1?0ρtotal(e)(k,w)ψ(k,w)=ρtotal(e)(k,w)?0(k2?w2c2)\left( k^2-\frac{w^2}{c^2} \right)\psi(\textbf k,w)=\frac{1}{\epsilon_0} \rho_{total}^{(e)}(\textbf k,w) \\ \psi(\textbf k,w)=\frac{\rho_{total}^{(e)}(\textbf k,w) }{\epsilon_0(k^2-\frac{w^2}{c^2})}(k2?c2w2?)ψ(k,w)=?0?1?ρtotal(e)?(k,w)ψ(k,w)=?0?(k2?c2w2?)ρtotal(e)?(k,w)?
這與我們用Fourier變換法得到的解一致;如果不要平面波解的假設(shè),只做一般性討論,那么
(Δ+w2c2)ψ(r,w)=?1?0ρtotal(e)(r,w)\left( \Delta+\frac{w^2}{c^2} \right)\psi(\textbf r,w)=-\frac{1}{\epsilon_0} \rho_{total}^{(e)}(\textbf r,w)(Δ+c2w2?)ψ(r,w)=??0?1?ρtotal(e)?(r,w)
這個(gè)方程被稱為Helmholtz方程,它的解法與Poisson方程類似,都可以用Green函數(shù)法。
矢量勢(shì)滿足的2階PDE
考慮Maxwell方程2,?×B=μ0Jtotal(e)+1c2??tE?×(?×A)=μ0Jtotal(e)+1c2??t(??ψ???tA)\nabla \times \textbf B=\mu_0 \textbf J^{(e)}_{total}+\frac{1}{c^2}\frac{\partial}{\partial t}\textbf E \\ \nabla \times (\nabla \times \textbf A)=\mu_0 \textbf J^{(e)}_{total}+\frac{1}{c^2}\frac{\partial}{\partial t}\left( -\nabla \psi - \frac{\partial}{\partial t}\textbf A\right)?×B=μ0?Jtotal(e)?+c21??t??E?×(?×A)=μ0?Jtotal(e)?+c21??t??(??ψ??t??A)
其中,
?×(?×A)=?(??A)????A?(??A+1c2??tψ)?μ0Jtotal(e)=ΔA?1c2?2?t2A\nabla \times (\nabla \times \textbf A)=\nabla(\nabla \cdot \textbf A)-\nabla \cdot \nabla \textbf A \\ \nabla \left( \nabla \cdot \textbf A + \frac{1}{c^2}\frac{\partial}{\partial t} \psi \right)-\mu_0 \textbf J^{(e)}_{total} = \Delta \textbf A-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\textbf A?×(?×A)=?(??A)????A?(??A+c21??t??ψ)?μ0?Jtotal(e)?=ΔA?c21??t2?2?A
在Lorenz Gauge下,
??A+1c2??tψ=0\nabla \cdot \textbf A + \frac{1}{c^2}\frac{\partial}{\partial t} \psi=0??A+c21??t??ψ=0
于是,
ΔA?1c2?2?t2A=?μ0Jtotal(e)\Delta \textbf A-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\textbf A=-\mu_0 \textbf J^{(e)}_{total} ΔA?c21??t2?2?A=?μ0?Jtotal(e)?
Laplace算子的含義
可以發(fā)現(xiàn)標(biāo)量勢(shì)與矢量勢(shì)滿足的方程是可以統(tǒng)一起來的,(Δ?1c2?2?t2)?傳播規(guī)律[ψA]?電磁場(chǎng)的勢(shì)=[?1?0ρtotal(e)(r,w)?μ0Jtotal(e)]?電磁場(chǎng)的源\underbrace{\left( \Delta - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)}_{傳播規(guī)律} \underbrace{ \left[ \begin{matrix} \psi \\ \textbf A \end{matrix} \right] }_{電磁場(chǎng)的勢(shì)}=\underbrace{\left[ \begin{matrix} -\frac{1}{\epsilon_0} \rho_{total}^{(e)}(\textbf r,w)\\ -\mu_0 \textbf J^{(e)}_{total} \end{matrix} \right]}_{電磁場(chǎng)的源}傳播規(guī)律(Δ?c21??t2?2?)??電磁場(chǎng)的勢(shì)[ψA?]??=電磁場(chǎng)的源[??0?1?ρtotal(e)?(r,w)?μ0?Jtotal(e)??]??
其中描述傳播規(guī)律的算子為
Δ?1c2?2?t2=?2?x2+?2?y2+?2?z2?1c2?2?t2\Delta - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}- \frac{1}{c^2}\frac{\partial^2}{\partial t^2} Δ?c21??t2?2?=?x2?2?+?y2?2?+?z2?2??c21??t2?2?
在Minkowski時(shí)空(x,y,z,ict)(x,y,z,ict)(x,y,z,ict)中,這個(gè)算子其實(shí)就是關(guān)于四維時(shí)空坐標(biāo)的Laplace算子。下面簡(jiǎn)單討論一下ΔA\Delta \textbf AΔA的計(jì)算:
ΔA=?(??A)??×(?×A)\Delta \textbf A=\nabla(\nabla \cdot \textbf A)-\nabla \times (\nabla \times \textbf A)ΔA=?(??A)??×(?×A)
考慮平面波解,用iki\textbf kik代入?\nabla?,在Fourier domain中,等式右邊為
ik(ik?A)?i2k×(k×A)=?k2Ai\textbf k (i\textbf k \cdot \textbf A)-i^2 \textbf k \times (\textbf k \times \textbf A)=-k^2 \textbf Aik(ik?A)?i2k×(k×A)=?k2A
所以用Fourier逆變換表示ΔA\Delta \textbf AΔA為,
ΔA=(2π)?4∫?∞+∞?k2A(k,w)ei(k?r?wt)dkdw\Delta \textbf A = (2\pi)^{-4} \int_{-\infty}^{+\infty}-k^2 \textbf A (\textbf k ,w)e^{i(\textbf k \cdot \textbf r - wt)}d \textbf k dwΔA=(2π)?4∫?∞+∞??k2A(k,w)ei(k?r?wt)dkdw
假設(shè)空間坐標(biāo)用笛卡爾坐標(biāo)系,那么
ΔA=(ΔAx)x^+(ΔAy)y^+(ΔAz)z^\Delta \textbf A = ( \Delta A_x)\hat x + ( \Delta A_y)\hat y + ( \Delta A_z)\hat z ΔA=(ΔAx?)x^+(ΔAy?)y^?+(ΔAz?)z^
但是在柱坐標(biāo)與球坐標(biāo)中,這個(gè)結(jié)論并不成立,我們需要用Fourier逆變換的那個(gè)一般性式子計(jì)算。
標(biāo)量勢(shì)與矢量勢(shì)的平面波解
依然考慮平面波解,上文得到了Fourier domain中標(biāo)量勢(shì)的解為
ψ(k,w)=ρtotal(e)(k,w)?0(k2?w2c2)\psi(\textbf k,w)=\frac{\rho_{total}^{(e)}(\textbf k,w) }{\epsilon_0(k^2-\frac{w^2}{c^2})}ψ(k,w)=?0?(k2?c2w2?)ρtotal(e)?(k,w)?
簡(jiǎn)單起見,要得到四維時(shí)空中標(biāo)量勢(shì)的解,可以直接計(jì)算它在Fourier domain中的解的逆變換,另外,在四維時(shí)空中,用(r,t)(\textbf r,t)(r,t)表示觀測(cè)位置,用(r′,t′)(\textbf r',t')(r′,t′)表示電磁場(chǎng)的源的位置,用r′′?r?r′\textbf r''-\textbf r - \textbf r'r′′?r?r′作為一個(gè)輔助變量。
ψ(r,t)=(2π)?4∫?∞+∞ψ(k,w)ei(k?r?wt)dkdw=(2π)?4∫?∞+∞ρtotal(e)(k,w)?0(k2?w2c2)ei(k?r?wt)dkdw=116π4?0∫?∞+∞ρtotal(e)(k,w)ei(k?r?wt)∫?∞+∞eiw∣r′′∣/c4π∣r′′∣e?ik?r′′dr′′dkdw=164π5?0∫?∞+∞eiw∣r′′∣/c∣r′′∣e?iwt∫?∞+∞ρtotal(e)(k,w)eik?(r?r′′)dkdwdr′′=18π2?0∫?∞+∞1∣r′′∣∫?∞+∞ρtotal(e)(r?r′′,w)e?iw(t?∣r′′∣/c)dwdr′′=14π?0∫?∞+∞ρtotal(e)(r?r′′,t?∣r′′∣/c)∣r′′∣dr′′\begin{aligned} \psi(\textbf r,t) & = (2 \pi)^{-4} \int_{-\infty}^{+\infty} \psi(\textbf k,w)e^{i(\textbf k\cdot \textbf r - wt)}d \textbf k d w \\ & = (2 \pi)^{-4} \int_{-\infty}^{+\infty} \frac{\rho_{total}^{(e)}(\textbf k,w) }{\epsilon_0(k^2-\frac{w^2}{c^2})}e^{i(\textbf k\cdot \textbf r - wt)}d \textbf k d w \\ & = \frac{1}{16 \pi^4 \epsilon_0}\int_{-\infty}^{+\infty} \rho_{total}^{(e)}(\textbf k,w) e^{i(\textbf k\cdot \textbf r - wt)} \int_{-\infty}^{+\infty} \frac{e^{iw|\textbf r''|/c}}{4 \pi |\textbf r''|}e^{-i \textbf k \cdot \textbf r''}d \textbf r''d \textbf k d w \\ & =\frac{1}{64 \pi^5 \epsilon_0} \int_{-\infty}^{+\infty}\frac{e^{iw|\textbf r''|/c}}{|\textbf r''|} e^{-iwt} \int_{-\infty}^{+\infty} \rho_{total}^{(e)}(\textbf k,w)e^{i\textbf k \cdot (\textbf r - \textbf r'')}d \textbf kdw d \textbf r'' \\ & =\frac{1}{8 \pi^2 \epsilon_0}\int_{-\infty}^{+\infty}\frac{1}{|\textbf r''|} \int_{-\infty}^{+\infty} \rho_{total}^{(e)}(\textbf r - \textbf r'',w)e^{-iw(t-|\textbf r''|/c)}dw d \textbf r'' \\ & = \frac{1}{4 \pi \epsilon_0} \int_{-\infty}^{+\infty} \frac{\rho^{(e)}_{total}(\textbf r - \textbf r'',t-|\textbf r''|/c)}{|\textbf r''|}d \textbf r''\end{aligned}ψ(r,t)?=(2π)?4∫?∞+∞?ψ(k,w)ei(k?r?wt)dkdw=(2π)?4∫?∞+∞??0?(k2?c2w2?)ρtotal(e)?(k,w)?ei(k?r?wt)dkdw=16π4?0?1?∫?∞+∞?ρtotal(e)?(k,w)ei(k?r?wt)∫?∞+∞?4π∣r′′∣eiw∣r′′∣/c?e?ik?r′′dr′′dkdw=64π5?0?1?∫?∞+∞?∣r′′∣eiw∣r′′∣/c?e?iwt∫?∞+∞?ρtotal(e)?(k,w)eik?(r?r′′)dkdwdr′′=8π2?0?1?∫?∞+∞?∣r′′∣1?∫?∞+∞?ρtotal(e)?(r?r′′,w)e?iw(t?∣r′′∣/c)dwdr′′=4π?0?1?∫?∞+∞?∣r′′∣ρtotal(e)?(r?r′′,t?∣r′′∣/c)?dr′′?
第三個(gè)等號(hào)用的是1k2?w2/c2\frac{1}{k^2-w^2/c^2}k2?w2/c21?的Fourier變換式,第四個(gè)等號(hào)用的是Fubini定理,第五個(gè)等號(hào)與第六個(gè)等號(hào)用的是Fourier變換的定義。矢量勢(shì)的計(jì)算與之類似,最終得到的解為
ψ(r,t)=14π?0∫?∞+∞ρtotal(e)(r′,t?∣r?r′∣/c)∣r?r′∣dr′A(r,t)=μ04π∫?∞+∞Jtotal(e)(r′,t?∣r?r′∣/c)∣r?r′∣dr′\psi(\textbf r,t)=\frac{1}{4 \pi \epsilon_0} \int_{-\infty}^{+\infty} \frac{\rho^{(e)}_{total}(\textbf r',t-|\textbf r - \textbf r'|/c)}{|\textbf r - \textbf r'|}d \textbf r' \\ \textbf A(\textbf r,t)=\frac{\mu_0}{4 \pi } \int_{-\infty}^{+\infty} \frac{\textbf J^{(e)}_{total}(\textbf r',t-|\textbf r - \textbf r'|/c)}{|\textbf r - \textbf r'|}d \textbf r'ψ(r,t)=4π?0?1?∫?∞+∞?∣r?r′∣ρtotal(e)?(r′,t?∣r?r′∣/c)?dr′A(r,t)=4πμ0??∫?∞+∞?∣r?r′∣Jtotal(e)?(r′,t?∣r?r′∣/c)?dr′
總結(jié)
以上是生活随笔為你收集整理的UA OPTI501 电磁波 求解Maxwell方程组的波动方程方法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI512R 傅立叶光学导论1
- 下一篇: UA OPTI570 量子力学25 2-