UA OPTI570 量子力学32 参考系与绘景
UA OPTI570 量子力學32 參考系與繪景
- Time-dependent Hamiltonian
- 薛定諤方程
- Time-dependent Reference Frame
- 繪景
- 薛定諤繪景(Schroedinger Picture)
- 海森堡繪景(Heisenberg Picture)
- Interaction Picture
Time-dependent Hamiltonian
薛定諤方程
在之前的筆記中,我們討論了薛定諤方程的可解性。考慮薛定諤方程
i???t∣ψ(t)?=H^∣ψ(t)?i\hbar \frac{\partial}{\partial t}|\psi(t) \rangle = \hat H |\psi(t) \ranglei??t??∣ψ(t)?=H^∣ψ(t)?
- 如果H^\hat HH^關于時間是常量,則U^(t,t0)=e?iH^(t?t0)/?\hat U(t,t_0)=e^{-i\hat H(t-t_0)/\hbar}U^(t,t0?)=e?iH^(t?t0?)/?
- 如果H^\hat HH^關于時間不是常量,但[H^(t),H^(t′)]=0[\hat H(t),\hat H(t')]=0[H^(t),H^(t′)]=0,則U^(t,t0)=e?∫t0tH^(t′)dt′/?\hat U(t,t_0)=e^{-\int_{t_0}^t \hat H(t')dt'/\hbar}U^(t,t0?)=e?∫t0?t?H^(t′)dt′/?
- 如果H^\hat HH^關于時間不是常數,而且[H^(t),H^(t′)]≠0[\hat H(t),\hat H(t')] \ne 0[H^(t),H^(t′)]?=0,我們就需要解薛定諤方程了i?∣ψ(t)?=H^(t)∣ψ(t)?i\hbar |\psi(t) \rangle = \hat H(t)|\psi(t) \ranglei?∣ψ(t)?=H^(t)∣ψ(t)?
第一個結果是第二個結果的特例,也可以直接推導得到,如果H^\hat HH^是常量,則i?∣ψ(t)?=H^∣ψ(t)?i\hbar |\psi(t) \rangle = \hat H|\psi(t) \ranglei?∣ψ(t)?=H^∣ψ(t)?就是一個很簡單的常系數線性微分方程組,通解為
∣ψ(t)?=eH^i?(t?t0)∣ψ(t0)?=e?iH^(t?t0)/?∣ψ(t0)?|\psi(t) \rangle = e^{\frac{\hat H}{i\hbar}(t-t_0)}|\psi(t_0)\rangle=e^{-i\hat H(t-t_0)/\hbar}|\psi(t_0)\rangle∣ψ(t)?=ei?H^?(t?t0?)∣ψ(t0?)?=e?iH^(t?t0?)/?∣ψ(t0?)?第二個結果的證明在這一篇,現在討論第三種情況,下面把H^\hat HH^簡寫為HHH。
Time-dependent Reference Frame
類比經典力學中建立適當的參考系以簡化問題的思路,對特征態∣ψ(t)?|\psi(t) \rangle∣ψ(t)?引入一個參考系F(t):E→E\mathbb{F}(t):\mathcal{E} \to \mathcal{E}F(t):E→E,參考系是一個酉算符,它作用在特征態上得到的量子態也屬于態空間,
∣ψE(t)?=F(t)∣ψ(t)?∈E|\psi_E(t)\rangle=\mathbb{F}(t)|\psi(t) \rangle \in \mathcal{E}∣ψE?(t)?=F(t)∣ψ(t)?∈E
稱∣ψE(t)?|\psi_E(t)\rangle∣ψE?(t)?為Effective State;它滿足的薛定諤方程為
i???t∣ψ(t)?=HE(t)∣ψ(t)?i\hbar \frac{\partial}{\partial t}|\psi(t) \rangle = H_E(t) |\psi(t) \ranglei??t??∣ψ(t)?=HE?(t)∣ψ(t)?
稱這個薛定諤方程為Effective Schroedinger方程,稱HEH_EHE?為Effective Hamiltonian,它與原Hamiltonian的關系為
HE(t)=F(t)H(t)F?(t)?i?F(t)??tF?(t)H_E(t)=\mathbb{F}(t) H(t)\mathbb{F}^{\dag}(t)-i\hbar \mathbb{F}(t)\frac{\partial}{\partial t} \mathbb{F}^{\dag}(t)HE?(t)=F(t)H(t)F?(t)?i?F(t)?t??F?(t)
證明:In Schroedinger equation,
i???t∣ψ(t)?=H(t)∣ψ(t)?i\hbar \frac{\partial}{\partial t}|\psi(t) \rangle = H(t)|\psi(t) \ranglei??t??∣ψ(t)?=H(t)∣ψ(t)?
Now do substitution ∣ψ(t)?=F?(t)∣ψE(t)?|\psi(t) \rangle =\mathbb{F}^{\dag}(t)|\psi_E(t) \rangle∣ψ(t)?=F?(t)∣ψE?(t)?,
LHS=i???t(F?(t)∣ψE(t)?)=i?(??tF?(t))∣ψE(t)?+i?F?(t)??t∣ψE(t)?RHS=H(t)∣ψ(t)?=H(t)F?(t)∣ψE(t)?\begin{aligned}LHS & =i\hbar \frac{\partial}{\partial t}\left( \mathbb{F}^{\dag}(t)|\psi_E(t) \rangle \right) \\ & =i\hbar \left( \frac{\partial}{\partial t} \mathbb{F}^{\dag}(t) \right)|\psi_E(t) \rangle + i\hbar \mathbb{F}^{\dag}(t) \frac{\partial}{\partial t}|\psi_E(t) \rangle \\ RHS & =H(t)|\psi(t) \rangle=H(t)\mathbb{F}^{\dag}(t)|\psi_E(t) \rangle \end{aligned}LHSRHS?=i??t??(F?(t)∣ψE?(t)?)=i?(?t??F?(t))∣ψE?(t)?+i?F?(t)?t??∣ψE?(t)?=H(t)∣ψ(t)?=H(t)F?(t)∣ψE?(t)??
So the equation becomes
i?(??tF?(t))∣ψE(t)?+i?F?(t)??t∣ψE(t)?=H(t)F?(t)∣ψE(t)?i?F?(t)??t∣ψE(t)?=(H(t)F?(t)?i???tF?(t))∣ψE(t)?i???t∣ψE(t)?=(F(t)H(t)F?(t)?i?F(t)??tF?(t))∣ψE(t)?i\hbar \left( \frac{\partial}{\partial t} \mathbb{F}^{\dag}(t) \right)|\psi_E(t) \rangle + i\hbar \mathbb{F}^{\dag}(t) \frac{\partial}{\partial t}|\psi_E(t) \rangle = H(t)\mathbb{F}^{\dag}(t)|\psi_E(t) \rangle \\ i\hbar \mathbb{F}^{\dag}(t) \frac{\partial}{\partial t}|\psi_E(t) \rangle = \left( H(t)\mathbb{F}^{\dag}(t)-i\hbar\frac{\partial}{\partial t} \mathbb{F}^{\dag}(t)\right) |\psi_E(t) \rangle \\ i\hbar \frac{\partial}{\partial t}|\psi_E(t) \rangle = \left(\mathbb{F}(t) H(t)\mathbb{F}^{\dag}(t)-i\hbar \mathbb{F}(t)\frac{\partial}{\partial t} \mathbb{F}^{\dag}(t)\right) |\psi_E(t) \ranglei?(?t??F?(t))∣ψE?(t)?+i?F?(t)?t??∣ψE?(t)?=H(t)F?(t)∣ψE?(t)?i?F?(t)?t??∣ψE?(t)?=(H(t)F?(t)?i??t??F?(t))∣ψE?(t)?i??t??∣ψE?(t)?=(F(t)H(t)F?(t)?i?F(t)?t??F?(t))∣ψE?(t)?
Define effective Hamiltonian,
HE(t)=F(t)H(t)F?(t)?i?F(t)??tF?(t)H_E(t)=\mathbb{F}(t) H(t)\mathbb{F}^{\dag}(t)-i\hbar \mathbb{F}(t)\frac{\partial}{\partial t} \mathbb{F}^{\dag}(t)HE?(t)=F(t)H(t)F?(t)?i?F(t)?t??F?(t)
and the equation becomes effective Shroedinger equation,
i???t∣ψE(t)?=HE(t)∣ψE(t)?i\hbar \frac{\partial}{\partial t}|\psi_E(t) \rangle = H_E(t)|\psi_E(t) \ranglei??t??∣ψE?(t)?=HE?(t)∣ψE?(t)?
繪景
繪景(Picture)的含義是在不同參考系F(t)\mathbb{F}(t)F(t)下得到的不同effective Shroedinger equation及其導出的量子系統的性質。薛定諤繪景、海森堡繪景與Interaction Picture就是在不同參考系下的結果。
薛定諤繪景(Schroedinger Picture)
在薛定諤繪景中,位置與動量算符不隨時間變化,其他算符可以隨時間變化,但是這種它們的變化規律具有一些相通的性質。用∣ψS?|\psi_S \rangle∣ψS??表示薛定諤繪景下的一個量子態,ASA_SAS?表示薛定諤繪景下的任意算符,它的均值是
?AS?=?ψS∣AS∣ψS?\langle A_S \rangle = \langle \psi_S |A_S |\psi_S \rangle?AS??=?ψS?∣AS?∣ψS??
并且滿足微分方程:
ddt?AS?=1i??[AS,HS]?+??AS?t?\fracze8trgl8bvbq{dt}\langle A_S \rangle = \frac{1}{i\hbar} \langle [A_S,H_S] \rangle + \langle \frac{\partial A_S}{\partial t} \rangledtd??AS??=i?1??[AS?,HS?]?+??t?AS???
證明: 直接計算微分
ddt?AS?=ddt?ψS∣AS∣ψS?=(ddt?ψS∣)AS∣ψS?+?ψS∣AS∣(ddtψS?)+?ψS∣??tAS∣ψS?=?1i??ψS∣HSAS∣ψS?+1i??ψS∣ASHS∣ψS?+?ψS∣??tAS∣ψS?=1i??[AS,HS]?+??AS?t?\begin{aligned} \fracze8trgl8bvbq{dt}\langle A_S \rangle &=\fracze8trgl8bvbq{dt}\langle \psi_S |A_S |\psi_S \rangle \\& =(\fracze8trgl8bvbq{dt}\langle \psi_S |)A_S |\psi_S \rangle +\langle \psi_S |A_S | (\fracze8trgl8bvbq{dt} \psi_S \rangle)+\langle \psi_S |\frac{\partial}{\partial t} A_S |\psi_S \rangle \\ & = -\frac{1}{i\hbar} \langle \psi_S |H_S A_S|\psi_S \rangle +\frac{1}{i\hbar} \langle \psi_S |A_SH_S |\psi_S \rangle+\langle \psi_S |\frac{\partial}{\partial t} A_S |\psi_S \rangle \\ & = \frac{1}{i\hbar} \langle [A_S,H_S] \rangle + \langle \frac{\partial A_S}{\partial t} \rangle\end{aligned}dtd??AS???=dtd??ψS?∣AS?∣ψS??=(dtd??ψS?∣)AS?∣ψS??+?ψS?∣AS?∣(dtd?ψS??)+?ψS?∣?t??AS?∣ψS??=?i?1??ψS?∣HS?AS?∣ψS??+i?1??ψS?∣AS?HS?∣ψS??+?ψS?∣?t??AS?∣ψS??=i?1??[AS?,HS?]?+??t?AS????
基于這個結果,分別取AS=R,PA_S=\textbf R,\textbf PAS?=R,P,可得
ddt?R?=?P?mddt?P?=???V(R)?\fracze8trgl8bvbq{dt} \langle \textbf R \rangle = \frac{\langle \textbf P \rangle}{m} \\ \fracze8trgl8bvbq{dt}\langle \textbf P \rangle = - \langle \nabla V(\textbf R) \rangledtd??R?=m?P??dtd??P?=???V(R)?
這兩個方程被稱為Ehrenfest方程,它們說明在薛定諤繪景下,位移與動量算符的均值滿足的微分方程與經典力學中位移與動量滿足的方程具有完全相同的形式。
海森堡繪景(Heisenberg Picture)
在海森堡繪景中,參考系就是薛定諤時間演化算符
F(t)=U?(t,t0)\mathbb{F}(t)=U^{\dag}(t,t_0)F(t)=U?(t,t0?)
所以同一個算符在海森堡繪景與薛定諤繪景中滿足
AH=FASF?=U?(t,t0)ASU(t,t0)A_H = \mathbb{F}A_S \mathbb{F}^{\dag} = U^{\dag}(t,t_0) A_S U(t,t_0)AH?=FAS?F?=U?(t,t0?)AS?U(t,t0?)
根據Effective Hamiltonian的公式,
HE(t)=F(t)H(t)F?(t)?i?F(t)??tF?(t)=U?(t,t0)H(t)U(t,t0)?i?U?(t,t0)H(t)U(t,t0)i?=0\begin{aligned}H_E(t) & =\mathbb{F}(t) H(t)\mathbb{F}^{\dag}(t)-i\hbar \mathbb{F}(t)\frac{\partial}{\partial t} \mathbb{F}^{\dag}(t) \\ & = U^{\dag}(t,t_0) H(t)U(t,t_0)-i\hbar U^{\dag}(t,t_0) \frac{H(t)U(t,t_0)}{i\hbar}=0\end{aligned}HE?(t)?=F(t)H(t)F?(t)?i?F(t)?t??F?(t)=U?(t,t0?)H(t)U(t,t0?)?i?U?(t,t0?)i?H(t)U(t,t0?)?=0?
所以ddt∣ψE?=0\fracze8trgl8bvbq{dt}|\psi_E \rangle = 0dtd?∣ψE??=0,∣ψE(t)?=∣ψS(t0)?=F(t)∣ψ(t)?|\psi_E(t) \rangle=|\psi_S(t_0) \rangle=\mathbb{F}(t)|\psi(t) \rangle∣ψE?(t)?=∣ψS?(t0?)?=F(t)∣ψ(t)?。這說明海森堡繪景中的算符與薛定諤繪景中的算符相比只是多了一個時間演化的因子。
下表總結了海森堡繪景中的一些規律:
Interaction Picture
假設薛定諤繪景中的Hamiltonian滿足
HS(t)=H0+W(t)H_S(t)=H_0+W(t)HS?(t)=H0?+W(t)
也就是和時間無關的項H0H_0H0?與和時間有關的項W(t)W(t)W(t)可以分開,稱W(t)W(t)W(t)是time-dependent perturbation,基于H0H_0H0?的時間演化算符為
U(t,t0)=e?iH0(t?t0)/?U(t,t_0)=e^{-iH_0(t-t_0)/\hbar}U(t,t0?)=e?iH0?(t?t0?)/?
Interaction Picture的參考系滿足
F=U?(t,t0)=eiH0(t?t0)/?\mathbb{F}=U^{\dag}(t,t_0)=e^{iH_0(t-t_0)/\hbar}F=U?(t,t0?)=eiH0?(t?t0?)/?
則在Interaction Picture中,有如下性質,
- ∣ψI(t)?=eiH0(t?t0)/?∣ψS(t)?|\psi_I(t) \rangle=e^{iH_0(t-t_0)/\hbar} |\psi_S(t) \rangle∣ψI?(t)?=eiH0?(t?t0?)/?∣ψS?(t)?
- AI(t)=eiH0(t?t0)/?AS(t)e?iH0(t?t0)/?A_I(t)=e^{iH_0(t-t_0)/\hbar} A_S(t)e^{-iH_0(t-t_0)/\hbar}AI?(t)=eiH0?(t?t0?)/?AS?(t)e?iH0?(t?t0?)/?
- i???t∣ψI(t)?=HI(t)∣ψI(t)?i\hbar \frac{\partial}{\partial t}|\psi_I(t) \rangle = H_I(t)|\psi_I(t) \ranglei??t??∣ψI?(t)?=HI?(t)∣ψI?(t)?,其中HI(t)=eiH0(t?t0)/?W(t)e?iH0(t?t0)/?H_I(t)=e^{iH_0(t-t_0)/\hbar} W(t)e^{-iH_0(t-t_0)/\hbar}HI?(t)=eiH0?(t?t0?)/?W(t)e?iH0?(t?t0?)/?
總結
以上是生活随笔為你收集整理的UA OPTI570 量子力学32 参考系与绘景的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI512R 傅立叶光学导论2
- 下一篇: UA OPTI570 量子力学33 Ti