UA OPTI512R 傅立叶光学导论 采样定理例题
UA OPTI512R 傅立葉光學導論 采樣定理例題
例1 計算下列函數的帶寬
答案 主要就是計算這些函數的Fourier變換,
F[sinc(ax)]=1∣a∣F[sinc(x)](ξ/a)=1∣a∣rect(ξ/a)={1∣a∣,?∣a∣/2≤ξ≤∣a∣/20,otherwise\begin{aligned} \mathcal{F}[sinc(ax)] & =\frac{1}{|a|}\mathcal{F}[sinc(x)](\xi/a) \\ & =\frac{1}{|a|}rect(\xi/a) \\ &=\begin{cases} \frac{1}{|a|},-|a|/2 \le \xi \le |a|/2 \\ 0,otherwise \end{cases} \end{aligned}F[sinc(ax)]?=∣a∣1?F[sinc(x)](ξ/a)=∣a∣1?rect(ξ/a)={∣a∣1?,?∣a∣/2≤ξ≤∣a∣/20,otherwise??
所以帶寬為∣a∣|a|∣a∣,Nyquist頻率為ξNS>∣a∣\xi_{NS}>|a|ξNS?>∣a∣;
F[sinc2(ax)]=1∣a∣F[sinc2(x)](ξ/a)=1∣a∣tri(ξ/a)\begin{aligned} \mathcal{F}[sinc^2(ax)] & =\frac{1}{|a|}\mathcal{F}[sinc^2(x)](\xi/a) \\ & =\frac{1}{|a|}tri(\xi/a) \end{aligned}F[sinc2(ax)]?=∣a∣1?F[sinc2(x)](ξ/a)=∣a∣1?tri(ξ/a)?
帶寬為2∣a∣2|a|2∣a∣,Nyquist頻率為ξNS>2∣a∣\xi_{NS}>2|a|ξNS?>2∣a∣;
F[cos?(2πξ0x)]=δ(ξ?ξ0)+δ(x+x0)2\mathcal{F}[\cos(2\pi \xi_0 x)]=\frac{\delta(\xi-\xi_0)+\delta(x+x_0)}{2}F[cos(2πξ0?x)]=2δ(ξ?ξ0?)+δ(x+x0?)?
帶寬為2ξ02\xi_02ξ0?,Nyquist頻率為ξNS>2ξ0\xi_{NS}>2\xi_0ξNS?>2ξ0?;
F[sin?2(2πξ0x)]=12F[1?2cos?(2π2ξ0x)]=δ(ξ)+δ(ξ?2ξ0)+δ(x+2x0)2\mathcal{F}[\sin^2(2\pi \xi_0 x)]=\frac{1}{2}\mathcal{F}[1-2\cos(2\pi 2\xi_0 x)]=\frac{\delta(\xi)+\delta(\xi-2\xi_0)+\delta(x+2x_0)}{2}F[sin2(2πξ0?x)]=21?F[1?2cos(2π2ξ0?x)]=2δ(ξ)+δ(ξ?2ξ0?)+δ(x+2x0?)?
帶寬為4ξ04\xi_04ξ0?,Nyquist頻率為ξNS>4ξ0\xi_{NS}>4\xi_0ξNS?>4ξ0?;
F[2cos?(πx)+sin?(2πx)]=δ(ξ?1/2)+δ(ξ+1/2)+δ(x?1)?δ(x+1)2\mathcal{F}[2\cos(\pi x)+\sin(2\pi x)]=\delta(\xi-1/2)+\delta(\xi+1/2)+\frac{\delta(x-1)-\delta(x+1)}{2}F[2cos(πx)+sin(2πx)]=δ(ξ?1/2)+δ(ξ+1/2)+2δ(x?1)?δ(x+1)?
帶寬為222,Nyquist頻率為ξNS>2\xi_{NS}>2ξNS?>2;
F[sinc2(x)cos?(πx)]=tri(x)?δ(x?1/2)+δ(x+1/2)2=tri(x?1/2)+tri(x+1/2)2\begin{aligned} \mathcal{F}[sinc^2(x)\cos(\pi x)] & =tri(x) \otimes \frac{\delta(x-1/2)+\delta(x+1/2)}{2} \\ & = \frac{tri(x-1/2)+tri(x+1/2)}{2} \end{aligned}F[sinc2(x)cos(πx)]?=tri(x)?2δ(x?1/2)+δ(x+1/2)?=2tri(x?1/2)+tri(x+1/2)??
帶寬為333,Nyquist頻率為ξNS>3\xi_{NS}>3ξNS?>3;
例2 某種連續信號為f(x)=sinc2(5x)f(x)=sinc^2(5x)f(x)=sinc2(5x),用采樣函數samp(x)=ξScomb(ξSx)samp(x)=\xi_Scomb(\xi_Sx)samp(x)=ξS?comb(ξS?x)對其進行采樣后作為一個傳遞函數為H(ξ)=rect(ξ/ξS)H(\xi)=rect(\xi/\xi_S)H(ξ)=rect(ξ/ξS?)的LSI的輸入,用g(x)g(x)g(x)表示LSI的輸出。
答案
第一問,計算f(x)f(x)f(x)的Fourier變換
F(ξ)=F[f(x)]=F[sinc2(5x)]=15tri(x/5)\begin{aligned} F(\xi) & = \mathcal{F}[f(x)]=\mathcal{F}[sinc^2(5x)] = \frac{1}{5}tri(x/5) \end{aligned}F(ξ)?=F[f(x)]=F[sinc2(5x)]=51?tri(x/5)?
帶寬為10,所以ξNS=10\xi_{NS}=10ξNS?=10;
第二問,計算輸入的頻譜,
FS(ξ)=F[f(x)samp(x)]=F(ξ)?F[samp(x)]=15tri(ξ/5)?comb(ξ/ξS)=15tri(ξ/5)?∑n=?∞+∞δ(ξ?nξS)\begin{aligned} F_S(\xi) & =\mathcal{F}[f(x)samp(x)] \\ & =F(\xi) \otimes \mathcal{F}[samp(x)] \\ & = \frac{1}{5} tri(\xi/5) \otimes comb(\xi/\xi_S) \\ & = \frac{1}{5} tri(\xi/5) \otimes \sum_{n=-\infty}^{+\infty}\delta(\xi-n\xi_S) \end{aligned}FS?(ξ)?=F[f(x)samp(x)]=F(ξ)?F[samp(x)]=51?tri(ξ/5)?comb(ξ/ξS?)=51?tri(ξ/5)?n=?∞∑+∞?δ(ξ?nξS?)?
所以輸出的頻譜為
G(ξ)=FS(ξ)H(ξ)=[15tri(ξ/5)?∑n=?∞+∞δ(ξ?nξS)]rect(ξ/ξS)=110rect(ξbξNS)+110tri(ξ(1?b)ξNS)\begin{aligned} G(\xi) & = F_S(\xi)H(\xi) \\ & = \left[ \frac{1}{5} tri(\xi/5) \otimes \sum_{n=-\infty}^{+\infty}\delta(\xi-n\xi_S) \right] rect(\xi/\xi_S) \\ & = \frac{1}{10}rect \left( \frac{\xi}{b\xi_{NS}} \right)+\frac{1}{10}tri \left( \frac{\xi}{(1-b)\xi_{NS}} \right)\end{aligned}G(ξ)?=FS?(ξ)H(ξ)=[51?tri(ξ/5)?n=?∞∑+∞?δ(ξ?nξS?)]rect(ξ/ξS?)=101?rect(bξNS?ξ?)+101?tri((1?b)ξNS?ξ?)?
最后計算Fourier逆變換,
g(x)=F?1[110rect(ξbξNS)+110tri(ξ(1?b)ξNS)]=bsinc(bξNSx)+(1?b)sinc2((1?b)ξNSx)\begin{aligned} g(x) & = \mathcal{F}^{-1}\left[ \frac{1}{10}rect \left( \frac{\xi}{b\xi_{NS}} \right)+\frac{1}{10}tri \left( \frac{\xi}{(1-b)\xi_{NS}} \right) \right] \\ & = b sinc(b\xi_{NS}x)+(1-b)sinc^2((1-b)\xi_{NS}x)\end{aligned}g(x)?=F?1[101?rect(bξNS?ξ?)+101?tri((1?b)ξNS?ξ?)]=bsinc(bξNS?x)+(1?b)sinc2((1?b)ξNS?x)?
總結
以上是生活随笔為你收集整理的UA OPTI512R 傅立叶光学导论 采样定理例题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI570 量子力学34 Ha
- 下一篇: UA OPTI512R 傅立叶光学导论