UA OPTI512R 傅立叶光学导论 衍射例题
UA OPTI512R 傅立葉光學導論 衍射例題
例1 Fresnel衍射與Fraunhofer衍射的基本概念:在Fresnel field中可以使用Fraunhofer近似嗎?在Fraunhofer field中可以使用Fresnel近似嗎?
答案 Fresnel近似是二次波近似,Fraunhofer近似是平面波近似,所以在Fresnel field與Fraunhofer field中都是Fresnel近似更準確。
例2 Fresnel衍射基礎
Scalar衍射的傳遞函數為
Hz(ξ,η)=ejkz1?λ2(ξ2+η2)H_z(\xi,\eta)=e^{jkz\sqrt{1-\lambda^2(\xi^2+\eta^2)}}Hz?(ξ,η)=ejkz1?λ2(ξ2+η2)?
Fresnel衍射的傳遞函數為
Hz(ξ,η)=ejkze?jπλz(ξ2+η2)H_z(\xi,\eta)=e^{jkz}e^{-j\pi \lambda z(\xi^2+\eta^2)}Hz?(ξ,η)=ejkze?jπλz(ξ2+η2)
假設η=0\eta=0η=0,
答案
第一問,入射波的頻率需要滿足
1?λ2(ξ2+η2)=1?λ2ξ2≥0?ξ≤1λ1-\lambda^2(\xi^2+\eta^2)=1-\lambda^2 \xi^2 \ge 0 \Rightarrow \xi \le \frac{1}{\lambda}1?λ2(ξ2+η2)=1?λ2ξ2≥0?ξ≤λ1?
第二問,scalar衍射傳遞函數的相位為kz1?λ2(ξ2+η2)kz\sqrt{1-\lambda^2(\xi^2+\eta^2)}kz1?λ2(ξ2+η2)?,Fresnel衍射傳遞函數的相位為kz?πλz(ξ2+η2)kz-\pi \lambda z(\xi^2+\eta^2)kz?πλz(ξ2+η2),相位差為
kz1?λ2(ξ2+η2)?[kz?πλz(ξ2+η2)]=2πλz1?λ2(ξ2+η2)?[2πzλ?πλz(ξ2+η2)]=2πzλ[1?λ2(ξ2+η2)+λ2(ξ2+η2)?22]=2πzλ(1?λ2ξ2+λ2ξ2?22)\begin{aligned} & kz\sqrt{1-\lambda^2(\xi^2+\eta^2)}-[kz-\pi \lambda z(\xi^2+\eta^2)] \\ = & \frac{2\pi}{\lambda}z\sqrt{1-\lambda^2(\xi^2+\eta^2)}-\left[ \frac{2 \pi z}{\lambda}-\pi \lambda z(\xi^2+\eta^2)\right] \\ = & \frac{2 \pi z}{\lambda } \left[ \sqrt{1-\lambda^2(\xi^2+\eta^2)}+\frac{\lambda^2(\xi^2+\eta^2)-2}{2} \right] \\ = &\frac{2 \pi z}{\lambda } \left( \sqrt{1-\lambda^2\xi^2}+\frac{\lambda^2\xi^2-2}{2} \right) \end{aligned}===?kz1?λ2(ξ2+η2)??[kz?πλz(ξ2+η2)]λ2π?z1?λ2(ξ2+η2)??[λ2πz??πλz(ξ2+η2)]λ2πz?[1?λ2(ξ2+η2)?+2λ2(ξ2+η2)?2?]λ2πz?(1?λ2ξ2?+2λ2ξ2?2?)?
當λ2ξ2<<1\lambda^2\xi^2<<1λ2ξ2<<1時,(1?λ2ξ2+λ2ξ2?22)≈0\left( \sqrt{1-\lambda^2\xi^2}+\frac{\lambda^2\xi^2-2}{2} \right) \approx 0(1?λ2ξ2?+2λ2ξ2?2?)≈0,此時用Fresnel衍射近似的效果最好;
第三問,Fresnel衍射近似scalar衍射的條件為
∣2πzλ(1?λ2ξ2+λ2ξ2?22)∣≤2π?z≤λ∣1?λ2ξ2+λ2ξ2?22∣\begin{aligned} & \left| \frac{2 \pi z}{\lambda } \left( \sqrt{1-\lambda^2\xi^2}+\frac{\lambda^2\xi^2-2}{2} \right) \right| \le 2 \pi \\ \Rightarrow & z \le \frac{\lambda}{|\sqrt{1-\lambda^2\xi^2}+\frac{\lambda^2\xi^2-2}{2}|}\end{aligned}??∣∣∣∣?λ2πz?(1?λ2ξ2?+2λ2ξ2?2?)∣∣∣∣?≤2πz≤∣1?λ2ξ2?+2λ2ξ2?2?∣λ??
例3 三縫Fraunhofer衍射,考慮入射光ejkbxe^{jkbx}ejkbx,代表三縫的pupil函數為
P(x,y)=rect(x?dLx,yLy)+rect(xLx,yLy)+rect(x+dLx,yLy)P(x,y)=rect \left( \frac{x-d}{L_x},\frac{y}{L_y} \right)+rect \left( \frac{x}{L_x},\frac{y}{L_y} \right)+rect \left( \frac{x+d}{L_x},\frac{y}{L_y} \right)P(x,y)=rect(Lx?x?d?,Ly?y?)+rect(Lx?x?,Ly?y?)+rect(Lx?x+d?,Ly?y?)
計算衍射條紋分布;
答案 Fraunhofer衍射公式為
uz(xz,yz)=ejkzjλzejπλz(xz2+yz2)F[uin(xi,yi)]ξ=xzλz,η=yzλzu_z(x_z,y_z)=\frac{e^{jkz}}{j \lambda z}e^{j \frac{\pi}{\lambda z}(x_z^2+y_z^2)}\mathcal{F}[u_{in}(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z},\eta=\frac{y_z}{\lambda z}}uz?(xz?,yz?)=jλzejkz?ejλzπ?(xz2?+yz2?)F[uin?(xi?,yi?)]ξ=λzxz??,η=λzyz???
所以光強公式為
Iz(xz,yz)=1λ2z2∣F[uin(xi,yi)]ξ=xzλz,η=yzλz∣2I_z(x_z,y_z)=\frac{1}{\lambda^2z^2}\left| \mathcal{F}[u_{in}(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z},\eta=\frac{y_z}{\lambda z}}\right|^2Iz?(xz?,yz?)=λ2z21?∣∣∣?F[uin?(xi?,yi?)]ξ=λzxz??,η=λzyz???∣∣∣?2
入射光為
uin(xi,yi)=ejkbxiP(xi,yi)u_{in}(x_i,y_i)=e^{jkbx_i}P(x_i,y_i)uin?(xi?,yi?)=ejkbxi?P(xi?,yi?)
計算它的Fourier變換,
F[uin(xi,yi)]ξ=xzλz,η=yzλz=F[ejkb0xiP(xi,yi)]ξ=xzλz,η=yzλz=F[P(xi,yi)]ξ=xzλz?b0λ,η=yzλz=LxLysinc(Lx(xzλz?b0λ,Lyy))[1+2cos?2πdλz(x?b0z)]\begin{aligned} & \mathcal{F}[u_{in}(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z},\eta=\frac{y_z}{\lambda z}} \\ = & \mathcal{F}[e^{jkb_0x_i}P(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z},\eta=\frac{y_z}{\lambda z}} \\ = & \mathcal{F}[P(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z}-\frac{b_0}{ \lambda},\eta=\frac{y_z}{\lambda z}} \\ = & L_xL_ysinc \left( L_x \left( \frac{x_z}{\lambda z}-\frac{b_0}{ \lambda},L_yy \right) \right) \left[ 1+ 2\cos \frac{2 \pi d}{\lambda z} \left( x- b_0z\right) \right] \end{aligned}===?F[uin?(xi?,yi?)]ξ=λzxz??,η=λzyz???F[ejkb0?xi?P(xi?,yi?)]ξ=λzxz??,η=λzyz???F[P(xi?,yi?)]ξ=λzxz???λb0??,η=λzyz???Lx?Ly?sinc(Lx?(λzxz???λb0??,Ly?y))[1+2cosλz2πd?(x?b0?z)]?
所以光強分布為
Iz(xz,yz)=Lx2Ly2λ2z2sinc2(Lx(xzλz?b0λ,Lyy))[1+2cos?2πdλz(x?b0z)]2I_z(x_z,y_z)=\frac{L_x^2L_y^2}{\lambda^2z^2}sinc^2 \left( L_x \left( \frac{x_z}{\lambda z}-\frac{b_0}{ \lambda},L_yy \right) \right) \left[ 1+ 2\cos \frac{2 \pi d}{\lambda z} \left( x- b_0z\right) \right]^2 Iz?(xz?,yz?)=λ2z2Lx2?Ly2??sinc2(Lx?(λzxz???λb0??,Ly?y))[1+2cosλz2πd?(x?b0?z)]2
例4 有黑點的方孔Fraunhofer衍射,考慮均勻入射光,方孔的中心有一個圓形黑斑,所以pupil函數為
P(x,y)=rect(xL1,yL1)?circ(ρL2),L2<<L1P(x,y)=rect \left( \frac{x}{L_1},\frac{y}{L_1} \right)-circ\left( \frac{\rho}{L_2} \right),L_2<<L_1P(x,y)=rect(L1?x?,L1?y?)?circ(L2?ρ?),L2?<<L1?
計算far field;
答案
經過方孔后,入射光為
uin(xi,yi)=rect(xL1,yL1)?circ(ρL2)u_{in}(x_i,y_i)=rect \left( \frac{x}{L_1},\frac{y}{L_1} \right)-circ\left( \frac{\rho}{L_2} \right)uin?(xi?,yi?)=rect(L1?x?,L1?y?)?circ(L2?ρ?)
計算Fourier變換,
F[uin(xi,yi)]ξ=xzλz,η=yzλz=L12sinc(L1ξ,L1η)?L22J1(πL2ξ2+η2)2L2ξ2+η2∣ξ=xzλz,η=yzλz=L12sinc(L1xzλz,L1yzλz)?L22J1(πL2(xzλz)2+(yzλz)2)2L2(xzλz)2+(yzλz)2\begin{aligned} & \mathcal{F}[u_{in}(x_i,y_i)]_{\xi=\frac{x_z}{\lambda z},\eta =\frac{y_z}{\lambda z}} \\ = & \left.L_1^2 sinc(L_1\xi,L_1\eta)-L_2^2 \frac{J_1(\pi L_2 \sqrt{\xi^2 +\eta^2})}{2L_2\sqrt{\xi^2+\eta^2}} \right|_{\xi=\frac{x_z}{\lambda z},\eta =\frac{y_z}{\lambda z}} \\ = & L_1^2 sinc\left(\frac{L_1x_z}{\lambda z},\frac{L_1 y_z}{\lambda z}\right)-L_2^2 \frac{J_1(\pi L_2 \sqrt{(\frac{x_z}{\lambda z})^2 +(\frac{y_z}{\lambda z})^2})}{2L_2\sqrt{(\frac{x_z}{\lambda z})^2 +(\frac{y_z}{\lambda z})^2}} \end{aligned}==?F[uin?(xi?,yi?)]ξ=λzxz??,η=λzyz???L12?sinc(L1?ξ,L1?η)?L22?2L2?ξ2+η2?J1?(πL2?ξ2+η2?)?∣∣∣∣∣?ξ=λzxz??,η=λzyz???L12?sinc(λzL1?xz??,λzL1?yz??)?L22?2L2?(λzxz??)2+(λzyz??)2?J1?(πL2?(λzxz??)2+(λzyz??)2?)??
總結
以上是生活随笔為你收集整理的UA OPTI512R 傅立叶光学导论 衍射例题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI512R 傅立叶光学导论
- 下一篇: UA OPTI512R 傅立叶光学导论