u+iv=1z?1=1(x?1)+iy=(x?1)?iy(x?1)2+y2=(x?1)(x?1)2+y2+i?y(x?1)2+y2u+iv=\frac{1}{z-1}=\frac{1}{(x-1)+iy}=\frac{(x-1)-iy}{(x-1)^2+y^2}=\frac{(x-1)}{(x-1)^2+y^2}+i\frac{-y}{(x-1)^2+y^2}u+iv=z?11?=(x?1)+iy1?=(x?1)2+y2(x?1)?iy?=(x?1)2+y2(x?1)?+i(x?1)2+y2?y?, ?u?x=[(x?1)2+y2]?2(x?1)2[(x?1)2+y2]2=y2?(x?1)2[(x?1)2+y2]2?u?y=?2(x?1)y[(x?1)2+y2]2?v?x=2(x?1)y[(x?1)2+y2]2?v?y=?[(x?1)2+y2]+2y2[(x?1)2+y2]2=y2?(x?1)2[(x?1)2+y2]2\frac{\partial u}{\partial x}=\frac{[(x-1)^2+y^2]-2(x-1)^2}{[(x-1)^2+y^2]^2}=\frac{y^2-(x-1)^2}{[(x-1)^2+y^2]^2} \\ \frac{\partial u}{\partial y}=\frac{-2(x-1)y}{[(x-1)^2+y^2]^2} \\ \frac{\partial v}{\partial x}=\frac{2(x-1)y}{[(x-1)^2+y^2]^2} \\ \frac{\partial v}{\partial y}=\frac{-[(x-1)^2+y^2]+2y^2}{[(x-1)^2+y^2]^2}=\frac{y^2-(x-1)^2}{[(x-1)^2+y^2]^2}?x?u?=[(x?1)2+y2]2[(x?1)2+y2]?2(x?1)2?=[(x?1)2+y2]2y2?(x?1)2??y?u?=[(x?1)2+y2]2?2(x?1)y??x?v?=[(x?1)2+y2]22(x?1)y??y?v?=[(x?1)2+y2]2?[(x?1)2+y2]+2y2?=[(x?1)2+y2]2y2?(x?1)2?Above, ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? if z≠1z \ne 1z?=1. 1z?1\frac{1}{z-1}z?11? is holomorphic on C?{1}\mathbb C\setminus \{1\}C?{1}
u+iv=∣z∣2=x2+y2u+iv=|z|^2=x^2+y^2u+iv=∣z∣2=x2+y2, ?u?x=2x?u?y=2y?v?x=0?v?y=0\frac{\partial u}{\partial x}=2x \\ \frac{\partial u}{\partial y}=2y\\ \frac{\partial v}{\partial x}=0 \\ \frac{\partial v}{\partial y}=0?x?u?=2x?y?u?=2y?x?v?=0?y?v?=0 So ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? holds only if x=y=0x=y=0x=y=0. Hence, ∣z∣2|z|^2∣z∣2 is only differentiable at z=0z=0z=0, and it is not holomorphic.
u+iv=Imz+iRez=y+ixu+iv=Im z +i Re z=y+ixu+iv=Imz+iRez=y+ix, ?u?x=0?u?y=1?v?x=1?v?y=0\frac{\partial u}{\partial x}=0 \\ \frac{\partial u}{\partial y}=1\\ \frac{\partial v}{\partial x}=1 \\ \frac{\partial v}{\partial y}=0?x?u?=0?y?u?=1?x?v?=1?y?v?=0 Note that ?u?y≠??v?x\frac{\partial u}{\partial y} \ne -\frac{\partial v}{\partial x}?y?u??=??x?v?. Imz+iRezIm z +i Re zImz+iRez is not differentiable at any point.
u+iv=Imz+iRez=y?ixu+iv=Im z +i Re z=y-ixu+iv=Imz+iRez=y?ix, ?u?x=0?u?y=1?v?x=?1?v?y=0\frac{\partial u}{\partial x}=0 \\ \frac{\partial u}{\partial y}=1\\ \frac{\partial v}{\partial x}=-1 \\ \frac{\partial v}{\partial y}=0?x?u?=0?y?u?=1?x?v?=?1?y?v?=0 So ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? always holds. Imz+iRezIm z +i Re zImz+iRez is entire.