R:Kmeans
2019獨(dú)角獸企業(yè)重金招聘Python工程師標(biāo)準(zhǔn)>>>
例如要把一組數(shù)據(jù)分成兩個(gè)簇:> dataset = matrix(c(1,2, + 1.2,2, + 8,9, + 0.9,1.8, + 7,10, + 8.8,9.2), nrow=6, byrow=T) > dataset[,1] [,2] [1,] 1.0 2.0 [2,] 1.2 2.0 [3,] 8.0 9.0 [4,] 0.9 1.8 [5,] 7.0 10.0 [6,] 8.8 9.2 > kmeans(dataset, 2, iter.max = 20) K-means clustering with 2 clusters of sizes 3, 3Cluster means:[,1] [,2] 1 1.033333 1.933333 2 7.933333 9.400000Clustering vector: [1] 1 1 2 1 2 2Within cluster sum of squares by cluster: [1] 0.07333333 2.18666667(between_SS / total_SS = 98.6 %)Available components:[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" [7] "size"
Cluster means:[,1] [,2] 1 1.033333 1.933333 2 7.933333 9.400000 6個(gè)數(shù)據(jù)的簇標(biāo)號(hào)分別是:
Clustering vector: [1] 1 1 2 1 2 2
可視化:
> result = kmeans(dataset, 2, iter.max = 20) > plot(c(dataset[,1]), c(dataset[,2]), col=result$cluster)
參考:
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
轉(zhuǎn)載于:https://my.oschina.net/letiantian/blog/324317
總結(jié)
- 上一篇: strstr
- 下一篇: Servlet中乱码问题