多频段图像融合
多頻段圖像融合
from:http://blog.csdn.net/smallflyingpig/article/details/61200497
概述
圖像拼接一般包括warp(映射), compensation(光照補償)和blend(融合)三部分。
warp部分主要取決于相機參數(shù)估計的準確性,光照補償主要用于解決不同圖像曝光不同所帶來的輸出圖像的不同局部的光照差異,而blend則用于融合不同圖像之間的重疊部分,一般使用線性加權(quán)的方式來得到最終的輸出圖像。
多波段融合(multi blend)
多波段融合的基本思想是圖像可以分解為不同頻率的圖像的疊加(類似于傅里葉變換),在不同的頻率上,應(yīng)該使用不同的權(quán)重來進行融合,在低頻部分應(yīng)該使用波長較寬的加權(quán)信號(例如高斯核函數(shù)中sigma比較大),在高頻部分應(yīng)該使用較窄的加權(quán)信號(例如高斯核函數(shù)的sigma比較小),其算法如下:
代碼實現(xiàn)
使用matlab實現(xiàn)多波段算法如下:
function C = multi_blend(A, B);%resize A,B,C to the same size A_size = size(A); B_size = size(B); C_size = [512,512]; if(A_size ~= C_size)A = imresize(A,C_size); end if(B_size ~= C_size)B = imresize(B,C_size); end%gaussian kernel kernel=fspecial('gaussian',[5 5],1);%obtain the Gauss Pyramid G_A0 = A; G_A1 = conv2(G_A0,kernel,'same'); G_A1 = G_A1(2:2:size(G_A1,1),2:2:size(G_A1,2)); G_A2 = conv2(G_A1,kernel,'same'); G_A2 = G_A2(2:2:size(G_A2,1),2:2:size(G_A2,2)); G_A3 = conv2(G_A2,kernel,'same'); G_A3 = G_A3(2:2:size(G_A3,1),2:2:size(G_A3,2)); G_A4 = conv2(G_A3,kernel,'same'); G_A4 = G_A4(2:2:size(G_A4,1),2:2:size(G_A4,2)); G_A5 = conv2(G_A4,kernel,'same'); G_A5 = G_A5(2:2:size(G_A5,1),2:2:size(G_A5,2));G_B0 = B; G_B1 = conv2(G_B0,kernel,'same'); G_B1 = G_B1(2:2:size(G_B1,1),2:2:size(G_B1,2)); G_B2 = conv2(G_B1,kernel,'same'); G_B2 = G_B2(2:2:size(G_B2,1),2:2:size(G_B2,2)); G_B3 = conv2(G_B2,kernel,'same'); G_B3 = G_B3(2:2:size(G_B3,1),2:2:size(G_B3,2)); G_B4 = conv2(G_B3,kernel,'same'); G_B4 = G_B4(2:2:size(G_B4,1),2:2:size(G_B4,2)); G_B5 = conv2(G_B4,kernel,'same'); G_B5 = G_B5(2:2:size(G_B5,1),2:2:size(G_B5,2));%get Laplacian Pyramid L_A0 = double(G_A0)-imresize(G_A1,size(G_A0)); L_A1 = double(G_A1)-imresize(G_A2,size(G_A1)); L_A2 = double(G_A2)-imresize(G_A3,size(G_A2)); L_A3 = double(G_A3)-imresize(G_A4,size(G_A3)); L_A4 = double(G_A4)-imresize(G_A5,size(G_A4)); L_A5 = double(G_A5);L_B0 = double(G_B0)-imresize(G_B1,size(G_B0)); L_B1 = double(G_B1)-imresize(G_B2,size(G_B1)); L_B2 = double(G_B2)-imresize(G_B3,size(G_B2)); L_B3 = double(G_B3)-imresize(G_B4,size(G_B3)); L_B4 = double(G_B4)-imresize(G_B5,size(G_B4)); L_B5 = double(G_B5);%construct the mask size0 = size(L_A0); mask0 = zeros(size0); mask0(:,1:size0(2)/2)=1; mask0(:,size0(2)/2-5:1:size0(2)/2+5)=repmat(1:-0.1:0,[size0(1) 1]); size1 = size(L_A1); mask1 = zeros(size1); mask1(:,1:size1(2)/2)=1; mask1(:,size1(2)/2-5:1:size1(2)/2+5)=repmat(1:-0.1:0,[size1(1) 1]); size2 = size(L_A2); mask2 = zeros(size2); mask2(:,1:size2(2)/2)=1; mask2(:,size2(2)/2-5:1:size2(2)/2+5)=repmat(1:-0.1:0,[size2(1) 1]); size3 = size(L_A3); mask3 = zeros(size3); mask3(:,1:size3(2)/2)=1; mask3(:,size3(2)/2-5:1:size3(2)/2+5)=repmat(1:-0.1:0,[size3(1) 1]); size4 = size(L_A4); mask4 = zeros(size4); mask4(:,1:size4(2)/2)=1; mask4(:,size4(2)/2-5:1:size4(2)/2+5)=repmat(1:-0.1:0,[size4(1) 1]); size5 = size(L_A5); mask5 = zeros(size5); mask5(:,1:size5(2)/2)=1; mask5(:,size5(2)/2-5:1:size5(2)/2+5)=repmat(1:-0.1:0,[size5(1) 1]);%obtain the output L_C0 = L_A0 .* mask0 + L_B0 .* (1-mask0); L_C1 = L_A1 .* mask1 + L_B1 .* (1-mask1); L_C2 = L_A2 .* mask2 + L_B2 .* (1-mask2); L_C3 = L_A3 .* mask3 + L_B3 .* (1-mask3); L_C4 = L_A4 .* mask4 + L_B4 .* (1-mask4); L_C5 = L_A5 .* mask5 + L_B5 .* (1-mask5); C = L_C0+imresize(L_C1,size0)+imresize(L_C2,size0)+imresize(L_C3,size0)+imresize(L_C4,size0)+imresize(L_C5,size0);figure(1); imshow(A); figure(2); imshow(B); figure(3); imshow(uint8(C));end實驗效果:
輸入兩張光照差別很大的圖像:
左半部分使用左圖,右半部分使用右圖,進行多波段融合得到如下:
每個波段融合使用的掩膜如下(白色代表左圖成分,黑色代表右圖成分):
其中前四幅圖為顯示方便做了偏移處理。
參考
總結(jié)
- 上一篇: 基于权因子的图像融合
- 下一篇: 泊松图像融合(泊松融合)