PCL点云处理算法目录
一、點云配準(zhǔn)
PCL中的點云配準(zhǔn)方法:https://www.sohu.com/a/321034987_715754
點云配準(zhǔn)資源匯總:https://mp.weixin.qq.com/s/rj090vstXl8nlI_lWndmTg
1、PCL ICP算法實現(xiàn)點云精配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/105825252
2、PCL 點到面的ICP精配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/109893261
3、PCL 點到面的ICP(非線性最小二乘):https://blog.csdn.net/qq_36686437/article/details/109998696
4、PCL 4PCS算法實現(xiàn)點云配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/105646373
5、PCL 3D-NDT 算法實現(xiàn)點云配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/105824202
6、PCL K4PCS算法實現(xiàn)點云配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/105782812
7、PCL 使用GICP對點云配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/107345969
8、PCL SAC_IA 初始配準(zhǔn)算法:https://blog.csdn.net/qq_36686437/article/details/107304152
9、PCL 交互式迭代最近點配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/106950838
10、PCL RANSAC實現(xiàn)點云粗配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/108889699
11、坐標(biāo)轉(zhuǎn)換
1)PCL Matrix4f實現(xiàn)點云坐標(biāo)變換:https://blog.csdn.net/qq_36686437/article/details/106769135
2)PCL Affine3f 實現(xiàn)點云平移旋轉(zhuǎn):https://blog.csdn.net/qq_36686437/article/details/106363380
3)奇異矩陣分解:https://blog.csdn.net/qq_36686437/article/details/107093185
12、對應(yīng)關(guān)系
1)PCL: CorrespondenceEstimationNormalShooting的使用:https://blog.csdn.net/qq_36686437/article/details/106047732
2)PCL 查找對應(yīng)點并可視化:https://blog.csdn.net/qq_36686437/article/details/106028371
3)PCL 提取點云重疊部分并保存:https://blog.csdn.net/qq_36686437/article/details/105886110
4)PCL 實現(xiàn)K近鄰查找匹配點對:https://blog.csdn.net/qq_36686437/article/details/106529092
5)PCL RANSAC算法去除誤匹配點對:https://blog.csdn.net/qq_36686437/article/details/107087020
6)*PCL FPFH查找對應(yīng)點對SVD進(jìn)行配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/109549082
13、PCL 中 getFitnessScore()的計算:https://blog.csdn.net/qq_36686437/article/details/106189636
14、點云配準(zhǔn)精度評價指標(biāo)——均方根誤差:https://blog.csdn.net/qq_36686437/article/details/107962194
15、點云配準(zhǔn)—計算旋轉(zhuǎn)平移誤差:https://blog.csdn.net/qq_36686437/article/details/108932995
二、點云濾波
pcl_filters模塊api代碼解析:https://mp.weixin.qq.com/s/PBcRJs2j4hK4qMlCljYIZQ
1、PCL 使用VoxelGrid對點云進(jìn)行下采樣:https://blog.csdn.net/qq_36686437/article/details/106628442
2、PCL 使用ApproximateVoxelGrid對點云進(jìn)行下采樣:https://blog.csdn.net/qq_36686437/article/details/109579041
3、PCL 統(tǒng)計濾波器:https://blog.csdn.net/qq_36686437/article/details/106627692
4、PCL 直通濾波(PassThrough):https://blog.csdn.net/qq_36686437/article/details/106627385
5、(1)PCL 點云添加高斯噪聲并保存:https://blog.csdn.net/qq_36686437/article/details/109569238
?(2)PCL 高斯濾波:https://blog.csdn.net/qq_36686437/article/details/107569087
6、PCL CropHull任意多邊形內(nèi)部點云提取:https://blog.csdn.net/qq_36686437/article/details/106961439
7、PCL CropBox 過濾/提取給定立方體內(nèi)的點云數(shù)據(jù):https://blog.csdn.net/qq_36686437/article/details/108896421
8、PCL 使用參數(shù)化模型投影點云:https://blog.csdn.net/qq_36686437/article/details/106951772
9、PCL 點云投影到球面:https://blog.csdn.net/qq_36686437/article/details/109580879
10、PCL 使用ConditionalRemoval和RadiusOutlierRemoval移除離群點:https://blog.csdn.net/qq_36686437/article/details/106960765
11、PCL 從一個點集中提取一個子集:https://blog.csdn.net/qq_36686437/article/details/106959266
12、上采樣、均勻采樣:
1)PCL 使用setUpsamplingMethod 對點云進(jìn)行上采樣:https://blog.csdn.net/qq_36686437/article/details/107151035
2)PCL 使用UniformSampling對點云進(jìn)行均勻采樣:https://blog.csdn.net/qq_36686437/article/details/107150158
3)PCL 采樣固定的點云數(shù)量:https://blog.csdn.net/qq_36686437/article/details/109626962
三、三維重建
1、PCL 無序點云的快速三角剖分:https://blog.csdn.net/qq_36686437/article/details/107384725
2、PCL 泊松曲面重建法:https://blog.csdn.net/qq_36686437/article/details/107391813
3、PCL 移動立方體算法:https://blog.csdn.net/qq_36686437/article/details/107401547
4、PCL 在平面模型上構(gòu)建凹多邊形:https://blog.csdn.net/qq_36686437/article/details/107404591
5、PCL 平面點云B樣條曲線擬合:https://blog.csdn.net/qq_36686437/article/details/107565489
6、PCL 基于B樣條曲線的曲面重建:https://blog.csdn.net/qq_36686437/article/details/107562180
四、KD樹與八叉樹
PCL中Kd樹理論:https://mp.weixin.qq.com/s/EvBlaymvcSaolBxTB5_ELg
1、PCL KD樹的使用:https://blog.csdn.net/qq_36686437/article/details/105692994
2、PCL addLine可視化K近鄰:https://blog.csdn.net/qq_36686437/article/details/106365440
3、PCL 計算點云密度以及無效值的處理:https://blog.csdn.net/qq_36686437/article/details/108758736
PCL中八叉樹理論:https://mp.weixin.qq.com/s/5iZZBBYTiRz0xFnK23eenw
1、PCL 八叉樹的使用:https://blog.csdn.net/qq_36686437/article/details/105922948
2、PCL 點云體素化并求體素中心:https://blog.csdn.net/qq_36686437/article/details/106275609
3、PCL 八叉樹實現(xiàn)空間變化檢測:https://blog.csdn.net/qq_36686437/article/details/106528377
五、特征點與特征描述
PCL 點云特征描述與提取:https://mp.weixin.qq.com/s/m3tlvBYrDG8wZZr7lWTOpA
點云局部特征描述綜述:https://mp.weixin.qq.com/s/9H2fiLDrg97VATk57Ou_kw
1、PCL Harris 關(guān)鍵點提取:https://blog.csdn.net/qq_36686437/article/details/107072992
2、PCL SIFT關(guān)鍵點提取:https://blog.csdn.net/qq_36686437/article/details/107067917
3、PCL ISS關(guān)鍵點提取:https://blog.csdn.net/qq_36686437/article/details/105806449
4、PCL 計算點云法向量并顯示:https://blog.csdn.net/qq_36686437/article/details/105559280
5、移動最小二乘原理:https://blog.csdn.net/qq_36686437/article/details/106103760
PCL MLS計算法線并顯示:https://blog.csdn.net/qq_36686437/article/details/106103599
6、PCL 使用積分圖進(jìn)行法線估計:https://blog.csdn.net/qq_36686437/article/details/107161752
7、點云的曲率及計算:https://blog.csdn.net/qq_36686437/article/details/105906584
PCL 計算點云的主曲率:https://blog.csdn.net/qq_36686437/article/details/105488457
8、PCL BoundaryEstimation進(jìn)行邊界提取:https://blog.csdn.net/qq_36686437/article/details/106522807
9、PCL 基于慣性矩與偏心率的描述子:https://blog.csdn.net/qq_36686437/article/details/107167018
10、PCL 估計一點云的VFH特征:https://blog.csdn.net/qq_36686437/article/details/107163266
11、PFH和FPFH的算法原理:https://blog.csdn.net/qq_36686437/article/details/105922657
PCL 計算PFH并可視化:https://blog.csdn.net/qq_36686437/article/details/105922110
PCL 計算FPFH并可視化:https://blog.csdn.net/qq_36686437/article/details/105921781
12、PCL Spin Image 旋轉(zhuǎn)圖像:https://blog.csdn.net/qq_36686437/article/details/107898742
13、PCL SHOT352描述子:https://blog.csdn.net/qq_36686437/article/details/108174987
六、點云分割
三維點云分割綜述【上】:https://mp.weixin.qq.com/s/BhDd5gn2lksFScKSe0NVbQ
三維點云分割綜述【中】:https://mp.weixin.qq.com/s/nEFAUcZnXe07J7hv41wh3A
三維點云分割綜述【下】:https://mp.weixin.qq.com/s/wjxQwD96kh7zlQ316AhRJQ
1、PCL 中實現(xiàn)平面模型分割:https://blog.csdn.net/qq_36686437/article/details/107078904
2、PCL RANSAC(擬合)分割多個平面:https://blog.csdn.net/qq_36686437/article/details/109606935
3、PCL 圓柱體模型分割:https://blog.csdn.net/qq_36686437/article/details/107579591
4、PCL 歐式聚類分割:https://blog.csdn.net/qq_36686437/article/details/107583476
5、PCL 區(qū)域生長分割:https://blog.csdn.net/qq_36686437/article/details/107584523
6、PCL 基于顏色的區(qū)域生長分割:https://blog.csdn.net/qq_36686437/article/details/107584955
7、PCL 最小圖割分割:https://blog.csdn.net/qq_36686437/article/details/107590028
8、PCL 基于法線微分(DoN)的分割:https://blog.csdn.net/qq_36686437/article/details/107614494
9、PCL 基于超體素的點云分割:https://blog.csdn.net/qq_36686437/article/details/107619805
10、PCL 漸進(jìn)式形態(tài)學(xué)濾波地面分割:https://blog.csdn.net/qq_36686437/article/details/107622650
七、PCL中的基礎(chǔ)函數(shù)
1、PCL common 常見基礎(chǔ)功能函數(shù):https://blog.csdn.net/qq_36686437/article/details/107807735
2、PCL 兩個點云中的數(shù)據(jù)或字段連接:https://blog.csdn.net/qq_36686437/article/details/108673165
4、PCL 常用小知識:https://blog.csdn.net/qq_36686437/article/details/106217577
5、PCL 點云格式轉(zhuǎn)換:https://blog.csdn.net/qq_36686437/article/details/108759360
6、PCL 計算點云質(zhì)心:https://blog.csdn.net/qq_36686437/article/details/109781979
7、PCL 計算點云軸向最值:https://blog.csdn.net/qq_36686437/article/details/109787737
八、RANSAC
1、RANSAC擬合直線:https://blog.csdn.net/qq_36686437/article/details/108522827
2、RANSAC擬合平面:https://blog.csdn.net/qq_36686437/article/details/106928207
3、RANSAC擬合圓柱:https://blog.csdn.net/qq_36686437/article/details/107579591
4、PCL RANSAC 分割指定閾值內(nèi)的平面:https://blog.csdn.net/qq_36686437/article/details/110846002
九、點云可視化
可視化:https://blog.csdn.net/weixin_38408805/article/details/84029427
可視化:https://segmentfault.com/a/1190000006685118
1、PCL 可視化體素格網(wǎng):https://blog.csdn.net/qq_36686437/article/details/109124691
2、PCL 點云按高程渲染顏色:https://blog.csdn.net/qq_36686437/article/details/109076885
3、PCL 點云可視化匯總:https://blog.csdn.net/qq_36686437/article/details/109596789
4、PCL 一個大窗口可視化兩個點云:https://blog.csdn.net/qq_36686437/article/details/109805887
5、PCL 兩個大窗口可視化兩個點云:https://blog.csdn.net/qq_36686437/article/details/109964346
6、PCL 兩個小窗口可視化點云:https://blog.csdn.net/qq_36686437/article/details/109960751
7、PCL 三個小窗口可視化點云:https://blog.csdn.net/qq_36686437/article/details/109963467
8、PCL 四個小窗口可視化點云:https://blog.csdn.net/qq_36686437/article/details/109960689
十、PCL之VTK
1、PCL 之vtk計算點云模型的法向量:https://blog.csdn.net/qq_36686437/article/details/111301744
2、PCL 之vtk計算點云模型的曲率:https://blog.csdn.net/qq_36686437/article/details/111303020
3、PCL 之vtk實現(xiàn)ICP配準(zhǔn):https://blog.csdn.net/qq_36686437/article/details/111303624
4、PCL 之vtk讀取3d max模型并可視化:https://blog.csdn.net/qq_36686437/article/details/111303817
5、PCL 之vtk計算點云模型的面積和體積:https://blog.csdn.net/qq_36686437/article/details/109553091
6、PCL 之vtk常見錯誤解決辦法:https://blog.csdn.net/qq_36686437/article/details/111361609
十一、ICP脈絡(luò)
總結(jié)
以上是生活随笔為你收集整理的PCL点云处理算法目录的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: IEEE-754标准(32位) 十六进制
- 下一篇: 随笔1:程序