久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

普里姆从不同顶点出发_来自三个不同聚类分析的三个不同教训数据科学的顶点...

發布時間:2023/11/29 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 普里姆从不同顶点出发_来自三个不同聚类分析的三个不同教训数据科学的顶点... 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

普里姆從不同頂點出發

繪制大流行時期社區的風險群圖:以布宜諾斯艾利斯為例 (Map Risk Clusters of Neighbourhoods in the time of Pandemic: a case of Buenos Aires)

介紹 (Introduction)

Every year is unique and particular. But, 2020 brought the world the special planetary pandemic challenge of COVID-19. It spread and penetrated rapidly into different parts of the globe. And, the autonomous city of Buenos Aires (CABA: Ciudad Autonoma de Buenos Aires) is not an exception.

每年都是獨一無二的。 但是,2020年給世界帶來了COVID-19的特殊行星大流行挑戰。 它Swift傳播并滲透到全球各地。 而且,布宜諾斯艾利斯自治市(CABA:布宜諾斯艾利斯自治城市)也不例外。

In this particular setting, in order to craft the settings for my capstone project, I contemplated a hypothetical corporate client in the food industry (catering business) from abroad (The Client), that is planning to relocate their representative family to the city of Buenos Aires (CABA) for their future entry into Argentina once the pandemic-related restrictions are lifted. Since this would be its very first entry to Buenos Aires, the city is still an unknown territory for the Client.

在這個特殊的環境中,為了完善我的頂峰項目的環境,我考慮了一個來自國外(客戶)食品行業(餐飲業務)的假設企業客戶,該公司計劃將其代表家庭搬到布宜諾斯艾利斯市一旦取消與大流行有關的限制,Aires(CABA)便會在未來進入阿根廷。 由于這將是它第一次進入布宜諾斯艾利斯,因此該城市對于客戶來說仍然是一個未知的領域。

Very concerned with the two risks — the general security risk (crime) and the pandemic risk (COVID-19) — the Client wants to exclude high risk neighbourhoods in the selection of the location for the plan. In addition, the Client wants to capture the characteristics of neighbourhoods based on popular commercial venue categories such as restaurants, shops, and sports facilities. In this context, the Client hired me as an independent data analyst to conduct a preliminary research for its future plan.

客戶非常關注這兩種風險-一般安全風險(犯罪)和大流行風險(COVID-19)-客戶希望在選擇計劃的地點時排除高風險社區。 此外,客戶希望根據受歡迎的商業場所類別(例如餐廳,商店和體育設施)來捕捉社區的特征。 在這種情況下,客戶聘請我擔任獨立數據分析師,以對其未來計劃進行初步研究。

The Client stressed that this is the first-round preliminary analysis for a further extended study for business expansion. And based on the finding from this preliminary analysis, the Client wants to explore the scope of the future analysis. Simply put, the Client wants to conduct the preliminary analysis within a short period of time under a small budget to taste the flavour of the subject.

客戶強調,這是為進一步擴展業務擴展研究而進行的第一輪初步分析。 并且,基于此初步分析的結果,客戶希望探索未來分析的范圍。 簡而言之,客戶希望在短時間內以少量預算進行初步分析,以品嘗主題的味道。

The Client sets the following three objectives for this preliminary assignment.

客戶為此初步任務設定以下三個目標。

  • Identify outlier high risk neighbourhoods (the Outlier Neighbourhood/Cluster) in terms of these two risks — the general security risk (crime) and the pandemic risk (COVID-19).

    從這兩個風險(一般安全風險(犯罪)和大流行風險(COVID-19))中識別異常高風險社區(異常社區/集群)。
  • Segment non-outlier neighbourhoods into several clusters (the Non-Outlier Clusters) and rank them based on a single quantitative risk metric (a compound risk metric of the general security risk and the pandemic risk).

    將非離群的鄰域劃分為多個群集(非離群的群集),并基于單個定量風險度量(一般安全風險和大流行風險的復合風險度量)對它們進行排名。
  • Use Foursquare API to characterize the Non-Outlier Neighbourhoods regarding popular venues. And if possible, segment Non-Outlier Neighbourhoods according to Foursquare venue profiles.

    使用Foursquare API來描述有關受歡迎場所的非離群社區。 并且,如果可能,請根據Foursquare場地配置文件對非離群區域進行細分。
  • The autonomous city of Buenos Aires (CABA) is a densely populated city: the total population of approximately 3 million in the area of 203 km2. And each neighbourhood has its own distinct size of area and population. The city is divided into 48 administrative division, aka ‘barrios’, to which I will refer simply as ‘neighbourhoods’ in this report.

    布宜諾斯艾利斯自治市(CABA)是一個人口稠密的城市:總人口約300萬,面積203平方公里。 每個鄰域都有其自己獨特的面積和人口規模。 該市分為48個行政區,又名“ barrios”,在本報告中,我將其簡稱為“社區”。

    The Client expressed their concern about the effect of the variability of population density among neighbourhoods. These two risks of the Client’s concern — the general security risk (crime) and the pandemic risk (COVID-19) — are likely affected by the population density profiles. Especially, the fact that ‘social distancing’ is a key to the prevention of COVID-19 suggests that population density is a significant attribute for the pandemic risk. In other words, the higher the population density, the higher the infection rate. The similar can be true for the general security risk. Obviously, this preconception needs to be assessed based on the actual data in the course of the project. This needs to be kept in mind for the analysis. Nevertheless, the Client ask me to scale risk metrics by ‘population density’ for the first round of the project.

    客戶對鄰里人口密度變化的影響表示關注。 客戶關注的這兩個風險(一般安全風險(犯罪)和大流行風險(COVID-19))可能會受到人口密度狀況的影響。 特別是,“社會隔離”是預防COVID-19的關鍵這一事實表明,人口密度是大流行風險的重要屬性。 換句話說,人口密度越高,感染率越高。 對于一般的安全風險也是如此。 顯然,需要根據項目過程中的實際數據來評估這種先入之見。 分析時必須牢記這一點。 但是,客戶要求我在項目的第一輪中按“人口密度”來衡量風險指標。

    Overall, the Client demonstrated high enthusiasm about Machine Learning and requested me to use machine learning models to achieve all these three objectives aforementioned.

    總體而言,客戶表現出了對機器學習的高度熱情,并要求我使用機器學習模型來實現上述所有三個目標。

    That is the background (business problem) scenario for this capstone project. On one hand, the scenario setting is totally hypothetical. On the other hand, the project handles real data.

    這是此頂點項目的背景(業務問題)方案。 一方面,方案設置完全是假設的。 另一方面,項目處理實際數據。

    Cut a long story short, for these three objectives presented above, I performed three different clustering machine-learning models. And I got three different lessons out of them. All of them are valuable. And in Discussion section of this article I will stress these different implications from the perspective of Data Science project management.

    簡而言之,對于上述三個目標,我執行了三種不同的集群機器學習模型。 我從中學到了三堂課。 所有這些都是有價值的。 在本文的“ 討論”部分,我將從數據科學項目管理的角度強調這些不同的含義。

    For now, I will invite you to walk through the process of the analysis.

    現在,我將邀請您逐步進行分析。

    The code of the project could be viewed in the following link of my GitHub repository:

    可以在我的GitHub存儲庫的以下鏈接中查看項目的代碼:

    · Code: https://github.com/Hyper-Phronesis/Capstone-1/blob/master/Capstone%20Three%20Different%20Lessons%20from%20Three%20Different%20Clusterings.ipynb

    ·代碼: https : //github.com/Hyper-Phronesis/Capstone-1/blob/master/Capstone%20Three%20Different%20Lessons%20from%20Three%20Different%20Clusterings.ipynb

    Now, let’s start.

    現在,讓我們開始。

    業務理解與分析方法 (Business Understanding and Analytical Approach)

    At the beginning of a Data Science project, we need to clarify the following two basic questions

    在數據科學項目開始時,我們需要澄清以下兩個基本問題

  • what needs to be solved. (Business Understanding)

    需要解決的問題。 (業務理解)
  • what kind of approach we need to make in order to achieve the objective. (Analytical Approach)

    為了達到目標,我們需要采取哪種方法。 (分析方法)
  • For the case of this project, the Client already has specified both. What the Client wants are risk profiling, venue profiling, and clustering of neighbourhoods. These are all about analysis of the status quo, in other words, descriptive analysis; or potentially, it might involve diagnostic (what happened or what are happening). In other words, the Client is not asking for a forecast (predictive analysis) or how to solve the problem (prescriptive analysis) — at least at this preliminary stage. These navigate the overall direction of our analysis.

    對于此項目,客戶端已經指定了兩者。 客戶需要的是風險剖析,場所剖析和社區聚類。 這些都是關于現狀的分析,換句話說就是描述性分析。 或可能涉及診斷(發生了什么或正在發生什么)。 換句話說,至少在這個初步階段,客戶并沒有要求進行預測(預測分析)或如何解決問題(描述性分析)。 這些將指導我們分析的總體方向。

    Now, all clear. Let’s mover to the next. Now, we start talking about data.

    現在,一切都清楚了。 讓我們前進到下一個。 現在,我們開始討論數據。

    A.數據部分 (A. Data Section)

    A1。 資料需求: (A1. Data Requirements:)

    By an analogy to cooking, Data Requirements is like a recipe, what ingredients we would need for cooking the dish: thus, what kind of data we would need for the analysis. The three objectives set by the Client determine the data requirements as follow:

    類似于烹飪,“數據需求”就像一個食譜,說明我們烹飪菜肴所需的食材:因此,我們需要哪種數據進行分析。 客戶設定的三個目標確定數據要求如下:

    (1) Basic information about the neighbourhoods in Buenos Aires.

    (1)關于布宜諾斯艾利斯居民區的基本信息。

    • The area and the population for each neighbourhood

      每個社區的面積和人口
    • The geographical coordinates to determine the administrative border of each neighbourhood (for map visualization)

      確定每個鄰域的行政邊界的地理坐標(用于地圖可視化)

    (2) Risk statistics:

    (2)風險統計:

    For the first and the second objectives, I would need to gather the following historical statistics to construct a compound risk metric to profile neighbourhoods from the perspectives of both the general insecurity risk (crime) and the pandemic risk (COVID-19).

    對于第一個和第二個目標,我將需要收集以下歷史統計數據,以從一般不安全風險(犯罪)和大流行風險(COVID-19)的角度構建復合風險度量標準,以對街區進行概要分析。

    • general security risk statistics (crime incidences) by neighbourhoods

      社區的一般安全風險統計(犯罪發生率)
    • pandemic risk statistics (COVID-19 confirmed cases) by neighbourhoods

      社區的大流行風險統計(COVID-19確診病例)

    (3) Foursquare Data:

    (3)Foursquare數據:

    For the third objective, the Client requires me to specifically use Foursquare API in order to characterise each Non-Outlier Neighbourhood.

    對于第三個目標,客戶要求我專門使用Foursquare API來表征每個非離群社區。

    A2。 數據源 (A2. Data Sources)

    Based on the data requirements, I explored the publicly available data. Then, I encountered the following relevant sources.

    根據數據需求,我探索了公開可用的數據。 然后,我遇到了以下相關資源。

    (1) Basic info of the neighbourhoods of CABA:

    (1)CABA社區的基本信息:

    • the area and the population of all the relevant neighbourhoods from Wikipedia: https://en.wikipedia.org/wiki/Neighbourhoods_of_Buenos_Aires

      維基百科上所有相關社區的面積和人口: https : //en.wikipedia.org/wiki/Neighbourhoods_of_Buenos_Aires

    • The city government of Buenos Aires provides a GeoJson file that contains the geographical coordinates which defines the administrative boundary of Barrios (the neighbourhoods) of Buenos Aires. https://data.buenosaires.gob.ar/dataset/barrios/archivo/1c3d185b-fdc9-474b-b41b-9bd960a3806e

      布宜諾斯艾利斯市政府提供了一個GeoJson文件,其中包含地理坐標,該地理坐標定義了布宜諾斯艾利斯Barrios(社區)的行政邊界。 https://data.buenosaires.gob.ar/dataset/barrios/archivo/1c3d185b-fdc9-474b-b41b-9bd960a3806e

    (2) Historical risk statistics.

    (2)歷史風險統計。

    • Crime Statistics: A csv file which is compiled and uploaded by Rama in his GitHub depository: https://github.com/ramadis/delitos-caba/releases/download/3.0/delitos.csv

      犯罪統計數據:一個由Rama在其GitHub存儲庫中編譯并上傳的csv文件: https : //github.com/ramadis/delitos-caba/releases/download/3.0/delitos.csv

    • COVID-19 Statistics: the city government’s website provides the COVID-19 statistics by neighbourhood: https://cdn.buenosaires.gob.ar/datosabiertos/datasets/salud/casos-covid-19/casos_covid19.xlsx

      COVID-19統計信息:市政府的網站按鄰居提供COVID-19統計信息: https ://cdn.buenosaires.gob.ar/datosabiertos/datasets/salud/casos-covid-19/casos_covid19.xlsx

    (3) Foursquare Data for Popular Venues by Neighbourhood:

    (3)各地區熱門場所的Foursquare數據:

    As per the Client’s requirement, I would specifically use Foursquare API in order to characterise each Non-Outlier Neighbourhood.

    根據客戶的要求,我將專門使用Foursquare API來表征每個非離群社區。

    A3。 數據采集 (A3. Data Collection)

    What follow now are data collection, data understanding, and data preparation. These parts altogether usually occupy a majority of time for the project, e.g. in a range of 60–70%.

    現在,接下來是數據收集,數據理解和數據準備。 這些部分通常總共占項目的大部分時間,例如占60-70%。

    For this article, I would compress the description of these time-consuming parts, by only outlining highlights.

    對于本文,我將僅概述重點內容來壓縮這些耗時部分的描述。

    After downloading all the relevant data from the data sources above, I have made data reconciliation — cleaning data and transforming it in a coherent format. Thereafter, I consolidated all the relevant data into two datasets: “Risk Profile of Neighbourhoods” dataset and “Foursquare Venue Profile” dataset. The first 5rows of each dataset are presented below to illustrate their components.

    從上面的數據源下載了所有相關數據之后,我進行了數據對帳-清理數據并將其轉換為一致的格式。 之后,我將所有相關數據合并為兩個數據集:“街區風險概況”數據集和“四方場地概況”數據集。 下面介紹了每個數據集的前5行,以說明它們的組成。

    The first 5 rows of “Risk Profile of Neighbourhoods”:

    “鄰里風險概況”的前5行:

    Neighbourhoods’ Features & Risk Data: the first 5 rows鄰居的特征和風險數據:前5行

    The first 5 rows of “Foursquare Venue Profile”:

    “四方場地簡介”的前5行:

    Foursquare Venue Data: the first 5 rowsFoursquare場地數據:前5行

    Here is an outline of data limitation below.

    以下是數據限制的概述。

    (1) Crime Statistics: “Crime Severity Score”

    (一)犯罪統計:“犯罪等級”

    The compiled crime data covers only the period between Jan 1, 2016 and Dec 31, 2018. For the purpose of the project, I would make an assumption that the data during the available period would be good enough to serve a representative proxy for the risk characteristic of each neighbourhood.

    匯總的犯罪數據僅涵蓋2016年1月1日至2018年12月31日期間。就本項目而言,我假設可用期間的數據足以為風險提供代表性代表每個社區的特征。

    The original crime statistics had 7 crime categories. They were weighted according to the severity of crime category and transformed to generate one single metric “Crime Severity Score”.

    原始犯罪統計數據有7種犯罪類別。 根據犯罪類別的嚴重程度對它們進行加權,然后轉換為一個度量“犯罪嚴重度評分”。

    (2) COVID-19 Statistics: “COVID-19 Confirmed Cases”

    (2)COVID-19統計:“ COVID-19確診病例”

    In order to measure the pandemic risk, I simply extracted the cumulative confirmed cases of COVID-19 for each neighbourhood. I did not net out the recovered cases from the data. Thus, the COVID-19 statistics in this analysis is a gross figure. My assumption here is that the gross data will proxy the empirical risk profile of COVID-19 infection.

    為了衡量大流行的風險,我只提取了每個社區累積的確診的COVID-19病例。 我沒有從數據中扣除恢復的案件。 因此,此分析中的COVID-19統計數據為毛值。 我在這里的假設是,總數據將替代COVID-19感染的經驗風險概況。

    (3) Foursquare Data:

    (3)Foursquare數據:

    Foursquare API allows the user to explore venues within a user specified radius from one single location point. In other words, the user needs to specify the following parameters:

    Foursquare API允許用戶從一個單一位置點探索用戶指定半徑內的場地。 換句話說,用戶需要指定以下參數:

    • The geographical coordinates of one single starting point

      一個單一起點的地理坐標
    • ‘radius’: The radius to set the geographical scope of the query.

      'radius':設置查詢地理范圍的半徑。

    This imposes a critical constraint in exploring venues within a neighbourhood from corner to corner. Since there is no uniformity in the area size among neighbourhoods, a compromise would be inevitable, while we want to capture the venue profile of a neighbourhood from corner to corner within its geographical border. Thus, the dataset that I would analyse for Foursquare venue analysis would be a geographically restrained sample set. I will use geopy’s Nominatim to obtain the representative single location point for each Neighbourhood.

    這在探索社區內各個角落的場所時施加了嚴格的約束。 由于各社區之間的面積大小并不一致,因此在我們希望捕獲某個社區在其地理邊界內從一個角落到另一個角落的場地概況時,將不可避免地要做出折衷。 因此,我將對Foursquare場所分析進行分析的數據集將是一個受地理約束的樣本集。 我將使用geopy的Nominatim為每個街區獲得代表性的單個位置點。

    A4。 數據理解 (A4. Data Understanding)

    By now, the required data has been collected and reconciled. By an analogy to cooking, I have already cleaned and chopped the required ingredients according to the cook book. Now, I need to check the characteristics of the prepared ingredients: if they are representative of what we expected according to the cook book or othewise. Analogously, in this step of ‘data understanding’, I need to get an insight about the given data.

    到現在為止,所需的數據已被收集和核對。 打個比方,我已經按照烹飪書清洗并切碎了所需的食材。 現在,我需要檢查準備好的食材的特性:它們是否代表我們根據烹飪書或其他所期望的內容。 類似地,在“數據理解”這一步驟中,我需要對給定數據有一個見解。

    Repeatedly, I consolidated all the relevant data into two datasets: “Risk Profile of Neighbourhoods” dataset and “Foursquare Venue Profile” dataset. Let me analyse one by one.

    我反復地將所有相關數據合并為兩個數據集:“街區風險概況”數據集和“四方場地概況”數據集。 讓我一一分析。

    (1) “Risk Profile of Neighbourhoods” dataset:

    (1)“鄰里風險概況”數據集:

    For data understanding, there are several basic tools that helps us shape insights about the data distribution. And I performed the following three basic visualizations and generated one basic descriptive statistics:

    為了了解數據,有幾種基本工具可幫助我們形成有關數據分布的見解。 我執行了以下三個基本可視化,并生成了一個基本的描述統計數據:

    a) Scatter Matrix:

    a)散布矩陣:

    The scatter matrix below displays two types of distribution:

    下面的分散矩陣顯示兩種分布類型:

    • the individual distribution of each feature variable on the diagonal cells;

      每個特征變量在對角線上的單獨分布;
    • the pair-wise distribution of data points for two feature variables.

      兩個特征變量的數據點的成對分布。
    Scatter Matrix: Cross-Features Scatter Plot散點圖:跨功能散點圖

    Here are some insights that I can derived from the scatter plot:

    以下是我可以從散點圖中得出的一些見解:

    • On the diagonal cells of the scatter matrix, all the data except ‘population density’ demonstrate highly skewed individual distributions, suggesting the presence of outliers.

      在散點圖矩陣的對角線上,除“人口密度”外,所有數據均顯示出高度偏斜的個體分布,表明存在異常值。
    • In the off-diagonal cells, the most of the pair-wise plots suggest positive correlations in one way or another: except ‘population density’ with the area size and ‘COVID-19 Confirmed Cases’.

      在非對角線細胞中,大多數成對圖以一種或另一種方式表明正相關:除了“人口密度”與面積大小和“ COVID-19確診病例”。

    b) Correlation Matrix:

    b)相關矩陣:

    In order to quantitatively capture the second insight above in one single table, I plotted the correlation matrix below.

    為了在一個表格中定量地獲得上述第二個見解,我在下面繪制了相關矩陣。

    Correlation Matrix of Feature Statistics特征統計的相關矩陣

    Overall, “population density” stands out in the sense that it demonstrates relatively lower correlation with these two risk-metrics. On the other hand, population demonstrates the highest correlation with these two risk-metrics. This would raise a question: which feature — ‘area’, ‘population’ or ‘population density’ — would be the best to scale these two risk-metrics, ‘Crime Severity Score (CSS)’ and ‘COVID-19 Confirmed Cases’? This question needs to be reserved for a suggestion for the second round of this project.

    總體而言,“人口密度”在與這兩個風險指標的相關性相對較低的意義上突出。 另一方面,人口與這兩個風險指標的相關性最高。 這就提出了一個問題:“面積”,“人口”或“人口密度”哪個特征將是最好的衡量這兩個風險指標的指標,“犯罪嚴重度評分(CSS)”和“ COVID-19確診病例” ? 這個問題需要保留,以便對該項目第二輪提出建議。

    Nevertheless, for this first round, as per the Client’s request to scale the risk metrics by population density, I scale these two-risk metrics with population density, by simply dividing the two risk-metrics by population density. As result, we have ‘CSS Index’ and ‘COVID-19 Index’.

    不過,在第一輪中,根據客戶要求按人口密度縮放風險指標的要求,我將這兩個風險度量值按人口密度進行了縮放,只需將兩個風險指標除以人口密度即可。 結果,我們有了“ CSS索引”和“ COVID-19索引”。

    In order to study individual distributions for these newly created indices, I made the following two basic types of visualizations. Here are two pairs of histogram and boxplot, the first pair for ‘CSS Index’ and the second pair for ‘COVID-19 Index’.

    為了研究這些新創建的索引的個體分布,我進行了以下兩種基本類型的可視化處理。 這是兩對直方圖和箱線圖,第一對為“ CSS索引”,第二對為“ COVID-19索引”。

    Histogram and Boxplot: ‘CSS Index’ by Neighbourhood直方圖和箱線圖:按鄰居分類的“ CSS索引” Histogram and Boxplot: ‘COVID-19 Index’ by Neighbourhood直方圖和箱線圖:按鄰域劃分的“ COVID-19索引”

    c) Histogram:

    c)直方圖:

    A histogram is useful to capture the shape of the distribution. It displays the distribution of data points across a pre-specified number of segmented ranges of the feature variable called bins. These two histograms (both on the left side) above visually warn the presence of outliers.

    直方圖對于捕獲分布的形狀很有用。 它顯示在預先指定數量的稱為bins的特征變量的分段范圍內的數據點分布。 上方的這兩個直方圖(均在左側)警告存在異常值。

    d) Boxplot:

    d)箱線圖:

    A boxplot displays the distribution of data according to descriptive statistics of percentiles: e.g. 25%, 50%, 75%. For our data, the boxplots above (on the right side) isolated outliers over their top whiskers. The tables below present more detailed info about these outliers from these two boxplots.

    箱形圖根據百分位的描述性統計顯示數據分布:例如25%,50%,75%。 對于我們的數據,上方(右側)的箱線圖將其頂部晶須上的離群值隔離了。 下表列出了來自這兩個箱形圖的這些離群值的詳細信息。

    There are some overlapping outlier neighbourhoods between these two lists. Consolidating them, here is the list of 8 overall risk outliers.

    這兩個列表之間存在一些重疊的離群鄰域。 合并它們,以下是8個總體風險異常值的列表。

    Now, let me plot the neighbourhoods on the two-dimensional risk space: ‘CSS Index’ and ‘COVID-19 Index’. The scatter plot below also helps us confirm these outliers visually.

    現在,讓我在二維風險空間上繪制鄰域:“ CSS索引”和“ COVID-19索引”。 下面的散點圖還有助于我們從視覺上確認這些異常值。

    Buenos Aires 48 Neighbourhoods’ Risk Profile (Crime & COVID-19)布宜諾斯艾利斯48個社區的風險簡介(犯罪和COVID-19)

    These simple visualizations and descriptive statistics can be a very powerful tool and it helps us shape an insight about the data at the stage of Data Understanding. In a way, before clustering analysis, the boxplot and the scatter plot have already spotted outliers.

    這些簡單的可視化和描述性統計信息可能是一個非常強大的工具,它可以幫助我們在“數據理解”階段塑造有關數據的見解。 在某種程度上,在進行聚類分析之前,箱線圖和散點圖已經發現了異常值。

    (2) “Foursquare Venue Profile” dataset:

    (2)“四方場地概況”數據集:

    Here is the summary of the Foursquare response to my query. In order to obtain an insight about the distribution of the response across different neighbourhoods, the histogram and the boxplot are presented below.

    這是對我的查詢的Foursquare響應的摘要。 為了深入了解不同社區的響應分布,下面介紹了直方圖和箱形圖。

    Histogram and Boxplot: ‘Venue Responses’ by Neighbourhood直方圖和箱線圖:鄰里的“場地響應”

    The histogram might suggest that there might be some issues in the coherency of data quality and availability across different neighbourhoods. If that is the case, this might affect the quality of the result of clustering machine learning.

    直方圖可能表明不同社區之間數據質量和可用性的一致性可能存在一些問題。 如果真是這樣,這可能會影響群集機器學習結果的質量。

    Just in case, I would like to see if there is any relationship between the Foursquare’s response and the three basic profiles of neighbourhoods. I generated the correlation matrix and the scatter matrix.

    為了以防萬一,我想看看Foursquare的回答和三個基本街區之間是否有任何關系。 我生成了相關矩陣和散射矩陣。

    Scatter Matrix散點矩陣 Correlation Matrix相關矩陣

    Here is an intuitive outcome. Venue response has the highest correlation with population density and the least correlation with the area size of neighbourhoods. In other words, the scatter matrix and the correlation matrix suggest that the higher the population density, the more venue information Foursquare has for neighbourhoods. It appeals to our common sense in a way: densely populated busy neighbourhoods have more venues.

    這是一個直觀的結果。 場地響應與人口密度的相關性最高,而與社區面積的相關性則最小。 換句話說,散布矩陣和相關矩陣表明,人口密度越高,Foursquare提供給附近社區的場所信息越多。 它在某種程度上吸引了我們的常識:人口稠密的繁忙社區擁有更多場地。

    For the rest of my work in data collection, data understanding, and data preparation, I would leave it up to the reader to see more detail in my code in the link above.

    在數據收集,數據理解和數據準備的其余工作中,我將留給讀者以查看上面鏈接中的代碼中的更多細節。

    方法論與分析 (B. Methodology & Analysis)

    Now, the data is prepared for analysis. So, I can move on to analysis

    現在,數據已準備好進行分析。 所以,我可以繼續分析

    The three objectives set by the Client at the outset and the data availability that I confirmed determine the scope of methodology. Cut a long story short, I run three clustering machine learning models for three different objectives and I got three very different lessons from them.

    客戶一開始設定的三個目標以及我確認的數據可用性決定了方法的范圍。 簡而言之,我針對三個不同的目標運行了三個集群機器學習模型,從中我得到了三個非常不同的教訓。

    Before proceeding further, let me review the three objectives here.

    在繼續進行之前,讓我在這里回顧三個目標。

  • Identify outlier high risk neighbourhoods (outlier neighbourhoods/clusters) in terms of these two risks — the general security risk (crime) and the pandemic risk (COVID-19).

    從這兩個風險(一般安全風險(犯罪)和大流行風險(COVID-19))中識別異常高風險社區(異常社區/集群)。
  • Segment non-outlier neighbours into several clusters (the non-outlier neighbourhoods/clusters) and rank them based on a single quantitative risk metric (a compound risk metric of the general security risk and the pandemic risk).

    將非離群的鄰居劃分為幾個集群(非離群的鄰居/集群),并基于單個定量風險度量(一般安全風險和大流行風險的復合風險度量)對它們進行排名。
  • Use Foursquare API to characterize the Non-Outlier Neighbourhoods regarding popular venues. And if possible, segment Non-Outlier Neighbourhoods according to popular venue profiles.

    使用Foursquare API來描述有關受歡迎場所的非離群社區。 并且,如果可能的話,請根據受歡迎的場所概況細分非離群地區。
  • Now, there presents one common salient feature among these three objectives. We have no ‘a priori knowledge’ about the underlying cluster structure of any of the subjects: outlier neighbourhoods, non-outlier neighbourhoods, and popular venue profiles among non-outlier neighbourhoods. Simply put, unlike supervised machine learning models, we have no labelled data to train: we have no empirical data about the dependent variable. All these three objectives demand us to discover hidden labels, or unknown underlying cluster structures in the dataset.

    現在,這三個目標之間呈現出一個共同的顯著特征。 我們沒有關于任何主題的基礎集群結構的“ 先驗知識”:離群社區,非離群社區以及非離群社區中的熱門場館概況。 簡而言之,與有監督的機器學習模型不同,我們沒有要訓練的標記數據:沒有因變量的經驗數據。 所有這三個目標都要求我們發現數據集中的隱藏標簽或未知的基礎簇結構。

    This feature would naturally navigate us to the territory of unsupervised machine learning, and more specifically, ‘Clustering Machine Learning’ in our context.

    此功能很自然地使我們導航到無監督機器學習的領域,更具體地講,在我們的上下文中是“集群機器學習”。

    By its design — in the absence of the labelled data (empirical data for the dependent variable) — it would be difficult to automate the validation/evaluation process for an unsupervised machine learning, simply because there is no empirical label to compare the model outputs with. According to Dr. Andrew Ng, there seems no widely accepted consensus about clear cut methods to assess the goodness of fit for clustering machine learning models. This creates an ample room for human insight, such as domain/business expertise, to get involved in the validation/evaluation process.

    通過其設計-在沒有標記數據(因變量的經驗數據)的情況下-很難自動化無監督機器學習的驗證/評估過程,這僅僅是因為沒有經驗標簽可以將模型輸出與。 據吳安德(Andrew Ng)博士說,似乎沒有一種明確的方法可以用來評估聚類機器學習模型的適用性 。 這為諸如域/業務專業知識之類的人類見識創造了足夠的空間,以參與驗證/評估過程。

    In this context, for this project, I will put more emphasis on tuning the model a priori rather than pursuing the automation of the a posteriori validation/evaluation process.

    在這種情況下,對于這個項目,我將更加強調先驗地調整模型,而不是追求后驗驗證/評估過程的自動化。

    As one more important thing to mention, we need to normalize/standardize all the input data before passing them to machine learning models.

    值得一提的是,我們需要在將所有輸入數據傳遞到機器學習模型之前對其進行標準化/標準化。

    Now, I will discuss the methodologies for each objective one by one.

    現在,我將逐個討論每個目標的方法。

    B1。 針對目標1的DBSCAN集群: (B1. DBSCAN Clustering for Objective 1:)

    The first objective is to identify ‘Outlier Neighbourhoods’.

    第一個目標是確定“異常地區”。

    Now, in the scatter plot below, all the neighbourhoods are plotted in the two-dimensional risk space: ‘CSS Index’ vs ‘COVID-19 Index’ space.

    現在,在下面的散點圖中,所有鄰域都在二維風險空間中繪制:“ CSS索引”與“ COVID-19索引”空間。

    Buenos Aires’ 48 Neighbourhoods Risk Profiles布宜諾斯艾利斯的48個鄰里風險簡介

    In order to identify outliers out of these “two-dimensional spatial data points”, I chose DBSCAN Clustering model, or Density-based Spatial Clustering of Applications with Noise. As its name suggests, DBSCAN is a density-based clustering algorithm and deemed appropriate for examining spatial data. Especially, I am very interested in how the density-based clustering algorithm would process outliers which are expected to demonstrate extremely sparse density.

    為了從這些“二維空間數據點”中識別離群值,我選擇了DBSCAN聚類模型 ,即基于噪聲的應用程序的基于密度的空間聚類 。 顧名思義,DBSCAN是基于密度的聚類算法,被認為適合檢查空間數據 。 尤其是,我對基于密度的聚類算法如何處理離群值異常稀疏的異常非常感興趣。

    There are several hyperparameters for DBSCAN. And the one considered as the most crucial is ‘eps’. According to the Skit-learn.org website, ‘eps’ is:

    DBSCAN有幾個超參數。 被認為是最關鍵的一個是“ eps ”。 根據Skit-learn.org網站,“ eps ”為:

    “the maximum distance between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function.” (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)

    “一個樣本的兩個樣本之間的最大距離應視為另一個樣本的鄰域。 這不是群集中點的距離的最大界限。 這是 為您的數據集和距離函數適當選擇 的最重要的DBSCAN參數 。” ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html )

    In order to tune ‘eps’, I will use KneeLocator of the python library kneed to identify the knee point (or elbow point).

    為了調諧“EPS”,我將使用KneeLocator的Python庫用膝蓋 識別拐點 (或肘點)。

    What is the knee point?

    拐點是什么?

    One way to interpret the knee point is that it is a point where the tuning results start converging within a certain acceptable range. Simply put, it is a point where further tuning enhancement would no longer yield a material incremental benefit. In other words, the knee point determines a cost-benefit boundary for model hyperparameter tuning enhancement.(Source: https://ieeexplore.ieee.org/document/5961514)

    一種解釋拐點的方法是,在該點上,調整結果開始在某個可接受的范圍內收斂。 簡而言之,在這一點上進一步的調優將不再產生實質性的增量收益。 換句話說, 拐點確定模型超參數調整增強的成本效益邊界 。(來源: https : //ieeexplore.ieee.org/document/5961514 )

    In order to discover the knee point of the model hyperparameter, ‘eps’, for DBSCAN model, I passed the normalized/standardized data of these two risk indices — namely ‘Standardized CSS Index’ and ‘Standardized COVID-19 Index’ — into the KneeLocator.

    為了發現模型超參數“ EPS” 的拐點 ,對于DBSCAN模型,我將這兩個風險指數(即“標準化CSS指數”和“標準化COVID-19指數”)的標準化/標準化數據傳遞給了KneeLocator

    And here is the plot result:

    這是繪圖結果:

    KneeLocator Output膝蓋定位器輸出

    The crossing point between the distance curve and the dotted straight vertical line identifies the knee point. Above the chart, KneeLocator also returned the one single value, 0.494, as the knee point. KneeLocator is telling me to choose this value as ‘eps’ to optimize the DBSCAN model. Accordingly, I plug it into DBSCAN. And here is the result.

    距離曲線和垂直虛線之間的交點表示拐點。 在圖表上方, KneeLocator還返回了一個單一值0.494作為拐點KneeLocator告訴我選擇此值作為'eps'以優化DBSCAN模型。 因此,我將其插入DBSCAN 。 這就是結果。

    With this plot, I can confirm that DBSCAN distinguished the sparsely distributed outliers from others, yielding two clusters for them: the cluster -1 (light green) and the cluster 1 (orange). Below, I list up all the neighbourhoods of these two sparse clusters.

    通過此圖,我可以確認DBSCAN可以將稀疏分布的異常值與其他異常值區分開,從而為它們生成兩個聚類:聚類-1(淺綠色)和聚類1(橙色)。 下面,我列出了這兩個稀疏群集的所有鄰域。

    Furthermore, in order to assess if the result at the knee point is good or not, I run DBSCAN with other different values of ‘eps’. Here is the result:

    此外,為了評估拐點處的結果是否良好,我使用其他不同的“ eps”值運行DBSCAN。 結果如下:

    Compared with the result of the knee point ‘eps’, no alternative above would give us a better convincing result. Thus, I will not reject the knee point, the output of KneeLocator, as the value for the hyperparameter, ‘eps’.

    拐點 “ eps”的結果相比,上述任何選擇都不能給我們帶來更好的說服力。 因此,我不會拒絕拐點,KneeLocator的輸出作為超參數“ eps”的值。

    When I look at the result of DBSCAN, I realise that this clustering result isolated into two clusters the same neighbourhoods as the outliers that the boxplot visualization identified during the Data Understanding stage.

    當我查看DBSCAN的結果時,我意識到該聚類結果被隔離為兩個聚類,它們與盒形圖可視化在數據理解階段確定的離群值相同。

    For your reminder, here is the result of the boxplot once again.

    提醒您,這是箱線圖的結果。

    The contents of these two results are identical (except for the order of the list). What does it tell us?

    這兩個結果的內容是相同的(列表的順序除外)。 它告訴我們什么?

    Now, the question worthwhile to ask would be: if we needed to perform a sophisticated and expensive model such as DBSCAN to identify outliers, when the simple boxplot can do that job.

    現在,值得提出的問題是:當簡單的箱形圖可以完成此工作時,是否需要執行復雜且昂貴的模型(例如DBSCAN)來識別異常值。

    In the perspective of cost-benefit management, the simple boxplot did the same job for the less cost — almost no cost. This might not be true when we have different data: especially, in a high-dimensional datapoints.

    從成本效益管理的角度來看,簡單的箱線圖以較低的成本完成了相同的工作-幾乎沒有成本。 當我們擁有不同的數據時,尤其是在高維數據點中,情況可能并非如此。

    At least, we should take this lesson in modesty so that we should not underestimate the power of simple methods like the boxplot visualisation.

    至少,我們應該謹慎地學習本課,以免低估箱形圖可視化等簡單方法的功能。

    B2。 第二個目標的層次聚類 (B2. Hierarchical Clustering for the second objective)

    Now, the second objective can be broken down into the following core sub-objectives:

    現在,第二個目標可以分解為以下核心子目標:

  • Segmentation of ‘Non-Outlier Neighbourhoods’.

    “非離群社區”的細分。
  • Construction of a single compound risk metric to measure both the general security risk and the pandemic risk.

    構建一個單一的復合風險度量以同時測量一般安全風險和大流行風險。
  • Measuring the risk profile at cluster level (not datapoints/neighbourhoods level).

    在群集級別(不是數據點/社區級別)上測量風險狀況。
  • a) Segmentation of ‘Non-Outlier Neighbourhoods’.

    a) “非離群社區”的細分。

    Given the result of the first objective, now I can remove “Outlier Neighbourhoods” from our dataset and focus only on “Non-Outlier Neighbourhoods” for further clustering segmentations.

    有了第一個目標的結果,現在我可以從數據集中刪除“離群值鄰域”,而僅關注“非離群值鄰域”以進一步進行聚類分割。

    This time, I choose Hierarchical Clustering model. Here are the reasons why I selected this particular model for the second objective:

    這次,我選擇層次聚類模型。 這是我選擇此特定模型作為第二個目標的原因:

    • I have no advance knowledge how many underlying clusters are expected in the dataset. Many clustering models, paradoxically, require the number of clusters as a hyperparameter input to tune the models a priori. But, Hierarchical Clustering doesn’t.

      我尚不了解在數據集中需要多少個基礎群集。 矛盾的是,許多聚類模型要求將聚類的數量作為超參數輸入來對模型進行先驗調整。 但是,分層聚類卻不是。

    • In addition, Hierarchical Clustering algorithm can generate a dendrogram that illustrates a tree-like cluster structure based on the hierarchical structure of the pairwise spatial distance distribution. The ‘dendrogram’ appeals to our human intuition in discovering the underlying cluster structure.

      另外,分層聚類算法可以基于成對空間距離分布的分層結構生成樹狀圖,該樹狀圖說明樹狀聚類結構。 “樹狀圖”吸引了我們人類的直覺,從而發現了潛在的簇結構。

    What is a dendrogram? Seeing is understanding! Maybe. Here you go:

    什么是樹狀圖? 眼見為諒! 也許。 干得好:

    The dendrogram allows the user to study the hierarchical structure of distances among datapoints and the underlying layers of cluster hierarchy. The dendrogram analyses and displays the hierarchical structure of all the potential clusters automatically. The resulting dendrogram illustrates a tree-like cluster structure based on the pairwise distance distribution. In this way, the dendrogram allows the user to design how many clusters to be made for further analysis. We can visually confirm the hierarchy of the distances among data points and the layers of cluster structure in the dendrogram.

    樹狀圖允許用戶研究數據點之間的距離的層次結構以及群集層次結構的基礎層。 樹狀圖自動分析并顯示所有潛在簇的層次結構。 生成的樹狀圖顯示了基于成對距離分布的樹狀群集結構。 這樣,樹狀圖使用戶可以設計要進行進一步分析的群集數。 我們可以從視覺上確認數據點之間的距離的層次結構以及樹狀圖中的簇結構層。

    • From this dendrogram, I choose 4 (at the distance of 5 or 6 on the x-axis in the dendrogram) as the number of clusters to be shaped.

      從該樹狀圖中,我選擇4(在樹狀圖的x軸上距離5或6)作為要成形的簇的數量。
    • Then, I run Hierarchical Cluster Model for the second time, this time with the specification of the number of the clusters, 4.

      然后,我第二次運行Hierarchical Cluster Model,這是在指定簇數為4的情況下進行的。

    Accordingly, I got the 4 clusters of the neighbourhoods. The following two charts present the clustered neighbourhoods on the two risk-metrics space: one with neighbourhoods’ names and the other without.

    因此,我得到了周圍的4個集群。 以下兩個圖表顯示了兩個風險度量空間上的聚類鄰域:一個帶有鄰域名稱,另一個沒有鄰域名稱。

    In order to assign these clusters risk values. I will construct one single compound risk metric.

    為了分配這些集群風險值。 我將構建一個單一的復合風險度量。

    b) Construction of Compound Risk Metric

    b)構建復合風險度量

    I need to compress the two risk profiles of clusters (‘CSS’ and ‘COVID-19’) together into one single compound metric in order to achieve one of the Client’s requirement.

    我需要將群集的兩個風險概況(“ CSS”和“ COVID-19”)壓縮到一個單一的復合指標中,以實現客戶的要求之一。

    For this purpose, I formulated a compound risk metric as follows.

    為此,我制定了如下的復合風險度量。

    Compound Risk Metric =

    復合風險指標=

    [(Standardized CSS Index — Standardized Origin of CSS Index)2 +

    [((標準化CSS索引-標準化CSS索引的來源)2+

    (Standardized COVID-19 Index — Standardized Origin of COVID-19 Index)2 ]^0.5

    (標準化的COVID-19索引-標準化的COVID-19索引來源)2] ^ 0.5

    Although the formula might appear not straightforward, its basic intent is very simple: to measure the risk position of each neighbourhood from the risk-free point in the two-dimensional risk space.

    盡管該公式可能看起來并不簡單,但是其基本意圖卻非常簡單:從二維風險空間中的無風險點測量每個鄰域的風險位置。

    For the raw data, the risk-free point is at the origin of the two-risk-metrics space, which is (0,0): 0 represents no risk in the raw data. The formula above is measuring the risk position of a data point from the risk-free point after the standardization/normalization transformation. It is because in order to pass the data into the machine learning model, the data needs to be normalized/standardized. In that sense, the formula above measures the distance between the standardized data points and the standardized risk-free position.

    對于原始數據,無風險點位于兩個風險度量空間的起點,即(0,0):0表示原始數據中無風險。 上面的公式從標準化/規范化轉換后的無風險點開始測量數據點的風險位置。 這是因為為了將數據傳遞到機器學習模型中,需要對數據進行標準化/標準化。 從這個意義上講,上面的公式測量了標準化數據點和標準化無風險頭寸之間的距離。

    Nothing else. That’s all and simple.

    沒有其他的。 就是這么簡單。

    b) Risk Profile of Cluster

    b)集群風險簡介

    Now, my ultimate purpose here is to quantify the risk profile at cluster level, not at data point/neighbourhood level.

    現在,我的最終目的是在集群級別而不是數據點/社區級別量化風險狀況。

    Each cluster has its own unique centre, aka “centroid”. Thus, in order to measure the risk profile of each cluster, I can refer to the centroid for each cluster. In this way, I can grade and rank all these clusters according to the compound risk metric of their centroids.

    每個簇都有自己獨特的中心,又稱“ 質心 ”。 因此,為了衡量每個群集的風險狀況,我可以參考每個群集的質心。 這樣,我可以根據其質心的復合風險度量對所有這些聚類進行分級和排名。

    Accordingly, I measure the compound risk metric of the centroids of all these 5 Non-Outlier Clusters and assign each of them a grade.

    因此,我測量了所有這5個非異常值聚類的質心的復合風險度量,并為其分配了一個等級。

    Here is the result.

    這是結果。

    The higher the grade, the riskier the cluster. I merged this result with the master dataset and assigned the cluster grade 5 to the 2 outlier clusters. Then, I mapped these cluster grades of all the neighbourhoods across CABA in the following Choropleth Map.

    等級越高,集群的風險就越高。 我將此結果與主數據集合并,并將5級聚類分配給2個離群聚類。 然后,在下面的Choropleth映射中,我繪制了CABA中所有鄰域的這些聚類等級。

    Risk Profiles of Neighbourhoods鄰里風險簡介

    This map visually summarises the findings for these first two objectives. It allows the user to visually distinguish neighbourhood clusters across the autonomous city of Buenos Aires based on their cluster risk grade.

    該地圖直觀地總結了前兩個目標的發現。 它使用戶能夠根據布宜諾斯艾利斯自治城市的聚類風險等級在視覺上區分其附近的聚類。

    B1。 第三個目標的Foursquare分析 (B1. Foursquare Analysis for the third objective)

    For the third objective, I used Foursquare data to carry out two analyses: Popular Venue Analysis; and Segmentation of Neighbourhoods based on Venue Composition.

    對于第三個目標,我使用Foursquare數據進行了兩個分析:流行場地分析; 場地組成的鄰域細分。

    a) Popular Venue Analysis:

    a)流行場地分析:

    I apply One Hot Encoding algorithm to transform the data structure of venue category for further data transformation.

    我應用一種熱編碼算法來轉換會場類別的數據結構,以進行進一步的數據轉換。

    With Foursquare data, which has venue-base information, I will use Pandas’ “groupby” method to transform it to a neighbourhood-base data and summarise the top 5 popular venue categories for each of 40 ‘Non-Outlier Neighbourhoods’. The result is a very long list thus, I only display the first 7 lines.

    借助具有場地基礎信息的Foursquare數據,我將使用Pandas的“ groupby”方法將其轉換為基于鄰域的數據,并總結40個“非離群鄰域”中每一個的前5個熱門場所類別。 結果是一個很長的列表,因此,我只顯示前7行。

    b) Segmentation of Neighbourhoods based on Venue Profile

    b)根據場地概況對鄰域進行細分

    Next, I need to segment the Foursquare venue profile of each neighbourhood. For this purpose, I contemplate K-Means Clustering Machine Learning.

    接下來,我需要細分每個社區的Foursquare場地概況。 為此,我打算使用K-Means集群機器學習。

    For a successful K-Means clustering result, I need to determine one of its hyperparameters, n_clusters: the number of clusters to form, thus, the number of centroids to generate. (source: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)

    為了獲得成功的K均值聚類結果,我需要確定其超參數之一n_clusters:要形成的簇數,因此要生成的質心數。 (來源: https : //scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html )

    I will run two hyperparameter tuning methods — K-Means Elbow Method and Silhouette Score Analysis — to tune its most important hyperparameter, n_clusters. These tuning methods would give me an insight about how to cluster the data for a meaningful analysis. Based on the findings from these tuning methods, I would decide how to implement the K-Means Clustering machine learning model.

    我將運行兩種超參數調整方法-K-Means彎頭方法和Silhouette Score分析-調整其最重要的超參數n_clusters。 這些調優方法將使我對如何對數據進行聚類進行有意義的分析有深刻的了解。 基于這些調整方法的發現,我將決定如何實施K-Means聚類機器學習模型。

    ‘K-Means Elbow Method’

    “ K-均值肘法”

    The spirit of ‘K-Means Elbow Method’ is the same as the knee point method that I explained earlier. Elbow locates a point where further tuning enhancement would no longer yield a material incremental benefit. In other words, Elbow determines a cost-benefit boundary for model hyperparameter tuning enhancement. Here is the result of K-Means Elbow Method:

    “ K均值肘部彎曲法”的精神與我之前介紹的拐點法相同。 彎頭定位在一個點上,進一步的調音增強將不再產生實質性的增量收益。 換句話說, Elbow確定了模型超參數調整增強的成本效益邊界。 這是K-均值肘法的結果:

    K-Means Elbow: No Elbow Found!K-均值肘部:未找到肘部!

    As the number of clusters increases, the response does not converge into any range; instead, it keeps dropping. There is no knee/elbow, the cost-benefit boundary, in the entire space. This suggests that there might be no meaningful cluster structure in the dataset. This is a disappointing result.

    隨著簇數的增加,響應不會收斂到任何范圍。 相反,它一直在下降。 整個空間中沒有膝蓋/肘部,即成本效益邊界。 這表明數據集中可能沒有有意義的聚類結構。 這是令人失望的結果。

    Silhouette Score Analysis

    輪廓分數分析

    https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

    https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

    Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighbouring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1].

    輪廓分析可用于研究所得簇之間的分離距離。 輪廓圖顯示了一個群集中的每個點與相鄰群集中的點的接近程度的度量,從而提供了一種直觀地評估參數(如群集數)的方法。 此度量的范圍為[-1,1]。

    Cut a long story short, the best value is 1, the worst -1.

    簡而言之,最佳值為1,最差為-1。

  • Silhouette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighbouring clusters. Which means, the sample is distinguished from the points belonging to other clusters.

    接近+1的輪廓系數(稱為這些值)表示樣本距離相鄰簇很遠。 這意味著,樣本與屬于其他聚類的點是有區別的。
  • A value of 0 indicates that the sample is on or very close to the decision boundary between two neighbouring clusters.

    值為0表示樣本在兩個相鄰聚類之間的決策邊界上或非常接近。
  • Negative values, (-1,0), indicate that those samples might have been assigned to the wrong cluster.

    負值(-1,0)表示這些樣本可能已分配給錯誤的群集。
  • I run the Silhouette Coefficient Analysis for 4 scenarios: n_cluster = [ 2, 3, 4, 5] to see which value of n_cluster yields the result closest to 1. And here are the results:

    I run the Silhouette Coefficient Analysis for 4 scenarios: n_cluster = [ 2, 3, 4, 5] to see which value of n_cluster yields the result closest to 1. And here are the results:

    n_cluster = 2n_cluster = 2 n_cluster = 3n_cluster = 3 n_cluster = 4n_cluster = 4 n_cluster = 5n_cluster = 5

    All results are close to 0, suggesting that the sample is on or very close to the decision boundary between two neighbouring clusters. In other words, there is no apparent indication of an underlying cluster structure in the dataset.

    All results are close to 0, suggesting that the sample is on or very close to the decision boundary between two neighbouring clusters. In other words, there is no apparent indication of an underlying cluster structure in the dataset.

    Both K-Means Elbow Method and Silhouette Analysis suggest that we cannot confirm an indication about the presence of the underlying cluster structure in the data set. It might be due to the characteristics of the city. Or it could be due to the quality of available data.

    Both K-Means Elbow Method and Silhouette Analysis suggest that we cannot confirm an indication about the presence of the underlying cluster structure in the data set. It might be due to the characteristics of the city. Or it could be due to the quality of available data.

    Whatever real reason it might be, all we know from these tuning results is that there is no convincing implication regarding the underlying cluster structure in the given data. In order to avoid an unreliable, and potentially misleading, recommendation, I would rather refrain from performing K-Means Clustering Model for the given dataset.

    Whatever real reason it might be, all we know from these tuning results is that there is no convincing implication regarding the underlying cluster structure in the given data. In order to avoid an unreliable, and potentially misleading, recommendation, I would rather refrain from performing K-Means Clustering Model for the given dataset.

    C. Discussion (C. Discussion)

    C1. Three Lessons from Three Different Clustering Analyses (C1. Three Lessons from Three Different Clustering Analyses)

    Lesson from the first objective:

    Lesson from the first objective:

    The first objective was to segregate outliers out of the dataset.

    The first objective was to segregate outliers out of the dataset.

    Before conducting clustering analysis, two simple boxplots automatically isolated outliers above their top whiskers from the rest: 8 in total for both of these two risk indices — the general security risk metric (Crime Severity Index) and the pandemic risk metric (COVID-19 Index).

    Before conducting clustering analysis, two simple boxplots automatically isolated outliers above their top whiskers from the rest: 8 in total for both of these two risk indices — the general security risk metric (Crime Severity Index) and the pandemic risk metric (COVID-19 Index).

    Then, DBSCAN clustering algorithm segmented these exactly identical 8 datapoints that the box plots identified as two remote clusters of sparsely distributed datapoints. Simply put, the machine learning model only confirmed the validity of the boxplots’ earlier automatic identification of those outliers.

    Then, DBSCAN clustering algorithm segmented these exactly identical 8 datapoints that the box plots identified as two remote clusters of sparsely distributed datapoints. Simply put, the machine learning model only confirmed the validity of the boxplots' earlier automatic identification of those outliers.

    This case tells us a lesson that a sophisticated method is not necessarily superior to a simpler method. Both of them did exactly the same job. We should take this lesson in modesty from the cost-benefit management perspective.

    This case tells us a lesson that a sophisticated method is not necessarily superior to a simpler method. Both of them did exactly the same job. We should take this lesson in modesty from the cost-benefit management perspective.

    Lesson from the second objective

    Lesson from the second objective

    The second objective was to segment ‘non-outlier’ neighbourhoods according to a compound risk metric (of CSS Index and COVID-19 Index).

    The second objective was to segment 'non-outlier' neighbourhoods according to a compound risk metric (of CSS Index and COVID-19 Index).

    The dendrogram of Hierarchical Clustering Model arranged 40 non-outlier neighbourhoods accordingly to their pairwise distance hierarchy. In other words, the dendrogram analysed and displayed the hierarchical structure of all the potential clusters automatically. And it allowed the user to explore and compare various cluster structures across different hierarchical levels. It’s worth running Hierarchical Clustering Model to generate the dendrogram because it visually helps the user shape human insight about the underlying cluster structural hierarchy. There is no other easier alternative to do the same job. It actually helped me to decide how many clusters to generate with Hierarchical Clustering algorithm for the second run.

    The dendrogram of Hierarchical Clustering Model arranged 40 non-outlier neighbourhoods accordingly to their pairwise distance hierarchy. In other words, the dendrogram analysed and displayed the hierarchical structure of all the potential clusters automatically. And it allowed the user to explore and compare various cluster structures across different hierarchical levels. It's worth running Hierarchical Clustering Model to generate the dendrogram because it visually helps the user shape human insight about the underlying cluster structural hierarchy. There is no other easier alternative to do the same job. It actually helped me to decide how many clusters to generate with Hierarchical Clustering algorithm for the second run.

    This presents a successful case that a machine learning model can play a productive role in supporting human decision-making process. A user can leverage one’s own profound domain expertise or human insight in the use of the dendrogram and effectively achieve the given objective.

    This presents a successful case that a machine learning model can play a productive role in supporting human decision-making process. A user can leverage one's own profound domain expertise or human insight in the use of the dendrogram and effectively achieve the given objective.

    The lesson here is that the user can proactively interact with machine learning algorithm to optimise the performance of machine learning and make a better decision.

    The lesson here is that the user can proactively interact with machine learning algorithm to optimise the performance of machine learning and make a better decision.

    Lesson from the third objective

    Lesson from the third objective

    The third objective was to cluster the neighbourhoods according to the Foursquare venue profile.

    The third objective was to cluster the neighbourhoods according to the Foursquare venue profile.

    I performed two hyperparameter tuning methods (K-Means Elbow Method and Silhouette Score Analysis) to discover the best n_clusters, one of the hyperparameters for K-Mean Clustering algorithm. Unfortunately, neither of them yielded a convincing implication about the underlying cluster structure in the Foursquare venue dataset. This suggests that a clustering model would unlikely yield a reliable result for the given dataset.

    I performed two hyperparameter tuning methods (K-Means Elbow Method and Silhouette Score Analysis) to discover the best n_clusters , one of the hyperparameters for K-Mean Clustering algorithm. Unfortunately, neither of them yielded a convincing implication about the underlying cluster structure in the Foursquare venue dataset. This suggests that a clustering model would unlikely yield a reliable result for the given dataset.

    The output of the machine learning is as good as the data input. The disappointing hyperparameter tuning result might have something to do with earlier concern about the quality of the Foursquare data.

    The output of the machine learning is as good as the data input. The disappointing hyperparameter tuning result might have something to do with earlier concern about the quality of the Foursquare data.

    Or, possibly there could be actually no particular underlying venue-based cluster structure among the neighbourhoods in CABA. That case, there would be no reason for running a clustering model for the dataset.

    Or, possibly there could be actually no particular underlying venue-based cluster structure among the neighbourhoods in CABA. That case, there would be no reason for running a clustering model for the dataset.

    Which is correct? This question, requiring a comparative study with data from other sources, might be a good topic for the second round of the study.

    Which is correct? This question, requiring a comparative study with data from other sources, might be a good topic for the second round of the study.

    Nonetheless, whatever real reason it might be, all I know from these tuning results is that there is no convincing implication regarding the underlying cluster structure in the given data. The lesson here would be: in the absence of supporting indication for the use of machine learning, I would be better off refraining from performing it in order to avoid a potentially misleading inference. Instead, I could rather provide more basic materials that can assist the Client use their human insight/domain expertise to analyse the subject.

    Nonetheless, whatever real reason it might be, all I know from these tuning results is that there is no convincing implication regarding the underlying cluster structure in the given data. The lesson here would be: in the absence of supporting indication for the use of machine learning, I would be better off refraining from performing it in order to avoid a potentially misleading inference. Instead, I could rather provide more basic materials that can assist the Client use their human insight/domain expertise to analyse the subject.

    Overall, with these different implications given, it would be na?ve to believe that we can simply automate machine learning process from the beginning to the end. Overall, all these cases support that human involvement could make machine learning more productive.

    Overall, with these different implications given, it would be na?ve to believe that we can simply automate machine learning process from the beginning to the end. Overall, all these cases support that human involvement could make machine learning more productive.

    C2. Suggestions for Future Development (C2. Suggestions for Future Development)

    As the Client stressed at the outset of the project, this analysis was the preliminary analysis for a further extended study for their business expansion. Now, based on the findings from this analysis I would like to contribute some suggestions for the next round. Let me start.

    As the Client stressed at the outset of the project, this analysis was the preliminary analysis for a further extended study for their business expansion. Now, based on the findings from this analysis I would like to contribute some suggestions for the next round. Let me start.

    Different Local Source for Venue Data

    Different Local Source for Venue Data

    Unfortunately, for the second part of the third objective — to segment non-outlier neighbourhoods into clusters based on their venue profile — I could not derive any convincing inference regarding the underlying cluster structure among non-outlier neighbourhoods. There were two possibilities as aforementioned. As one possibility, there is some issue in the quality of the Foursquare data. As the other possibility, there is actually no underlying cluster structure in the actual subject.

    Unfortunately, for the second part of the third objective — to segment non-outlier neighbourhoods into clusters based on their venue profile — I could not derive any convincing inference regarding the underlying cluster structure among non-outlier neighbourhoods. There were two possibilities as aforementioned. As one possibility, there is some issue in the quality of the Foursquare data. As the other possibility, there is actually no underlying cluster structure in the actual subject.

    For the former case, I would suggest that the Client might benefit from exploring other sources than Foursquare to examine the venue profiles of these neighbourhoods. That would allow the Client to assess by comparison if the Foursquare data is representative of the actual state of popular venues in this particular city.

    For the former case, I would suggest that the Client might benefit from exploring other sources than Foursquare to examine the venue profiles of these neighbourhoods. That would allow the Client to assess by comparison if the Foursquare data is representative of the actual state of popular venues in this particular city.

    Furthermore, for the latter case, the Client might benefit from exploring other analysis than clustering in order to better understand the subject.

    Furthermore, for the latter case, the Client might benefit from exploring other analysis than clustering in order to better understand the subject.

    Different Scaling

    Different Scaling

    At the outset of the project, the Client specifically requested to scale risk metrics by ‘population density’. Nevertheless, it is not really clear whether ‘population density’ is the best feature for scaling. There are two other possible alternatives in the dataset: ‘area’ and ‘population’. An alternative scaling might yield a different picture about the risk profile of the neighbourhoods. For the second round of the study I would strongly suggest that the Client explore other scaling alternatives as well.

    At the outset of the project, the Client specifically requested to scale risk metrics by 'population density'. Nevertheless, it is not really clear whether 'population density' is the best feature for scaling. There are two other possible alternatives in the dataset: 'area' and 'population'. An alternative scaling might yield a different picture about the risk profile of the neighbourhoods. For the second round of the study I would strongly suggest that the Client explore other scaling alternatives as well.

    As a reminder, the characteristics of these three features’ data were presented at the stage of Data Understanding.

    As a reminder, the characteristics of these three features' data were presented at the stage of Data Understanding.

    Effective Data Science Project Management Policy Making

    Effective Data Science Project Management Policy Making

    At last, from the perspective of an effective Data Science project management, I would recommend that the Client should incorporate into their data analysis policy the following two lessons from this project.

    At last, from the perspective of an effective Data Science project management, I would recommend that the Client should incorporate into their data analysis policy the following two lessons from this project.

  • When a basic tool can achieve the intended objective, it would be cost-effective to embrace it in deriving a conclusion/inference, rather than blindly implementing an advanced tool, such as machine learning.

    When a basic tool can achieve the intended objective, it would be cost-effective to embrace it in deriving a conclusion/inference, rather than blindly implementing an advanced tool, such as machine learning.
  • Unless we are certain that the given data is suitable for the design of a machine learning model — or whatever model, actually — it might be unproductive to run it. In such a case, there would be no point in wasting the precious resource to end up yielding a potentially misleading result.

    Unless we are certain that the given data is suitable for the design of a machine learning model — or whatever model, actually — it might be unproductive to run it. In such a case, there would be no point in wasting the precious resource to end up yielding a potentially misleading result.
  • Due to the hype for Machine Learning among the public, some clients demonstrate some blind craving for it, assuming that such an advanced tool would yield a superior result. Nevertheless, this project yielded a mixed set of answers of both ‘yes’ and ‘no’. Moreover, machine learning is not a panacea.

    Due to the hype for Machine Learning among the public, some clients demonstrate some blind craving for it, assuming that such an advanced tool would yield a superior result. Nevertheless, this project yielded a mixed set of answers of both 'yes' and 'no'. Moreover, machine learning is not a panacea.

    Especially since the Client demonstrated an exceptional enthusiasm towards Machine Learning for their future business decision making, I believe that it would be worthwhile reflecting these lessons in this report for their future productive conduct of data analysis.

    Especially since the Client demonstrated an exceptional enthusiasm towards Machine Learning for their future business decision making, I believe that it would be worthwhile reflecting these lessons in this report for their future productive conduct of data analysis.

    D. Final Products (D. Final Products)

    Now, as the final products for this preliminary project, I decided to present the following summary materials — a pop-up Choropleth map, two scatter plots, and a summary table — that can help the Client use their domain expertise for their own analysis.

    Now, as the final products for this preliminary project, I decided to present the following summary materials — a pop-up Choropleth map, two scatter plots, and a summary table — that can help the Client use their domain expertise for their own analysis.

    D1. Pop Up Choropleth Map (D1. Pop Up Choropleth Map)

    In order to summarize the results for all these objectives, I incorporated a pop-up feature into the choropleth map that I had created for the objective 1 and 2. Each pop-up would display the following additional information of the corresponding ‘non-outlier neighbourhood’.

    In order to summarize the results for all these objectives, I incorporated a pop-up feature into the choropleth map that I had created for the objective 1 and 2. Each pop-up would display the following additional information of the corresponding 'non-outlier neighbourhood'.

    • Name of the Neighbourhood

      Name of the Neighbourhood
    • Cluster Risk Grade: to show ‘Centroid_Grade’, the cluster risk profile of the neighbourhood.

      Cluster Risk Grade: to show 'Centroid_Grade', the cluster risk profile of the neighbourhood.
    • Top 3 Venue Categories

      Top 3 Venue Categories

    The map below illustrates an example of the pop-up feature.

    The map below illustrates an example of the pop-up feature.

    For high risk ‘outlier neighbourhoods’, I controlled the pop-up feature, since the Client wants to exclude them from consideration.

    For high risk 'outlier neighbourhoods', I controlled the pop-up feature, since the Client wants to exclude them from consideration.

    As a precaution, the colour on the map represents the Risk Cluster, not the Venue Cluster. Since I refrained from generating Venue Cluster, there is no Venue Cluster information on the map. This map would allow the Client to explore the popular venue profile for each neighbourhood individually.

    As a precaution, the colour on the map represents the Risk Cluster, not the Venue Cluster. Since I refrained from generating Venue Cluster, there is no Venue Cluster information on the map. This map would allow the Client to explore the popular venue profile for each neighbourhood individually.

    D2. Scatter Plots (D2. Scatter Plots)

    The following two scatter plots display the same underlying risk cluster structure: the first one with the names of neighbourhoods; the second without the names. In the first plot, the densely plotted names at the left bottom are obstructing the view of individual datapoints (‘non-outlier neighbourhoods’) in the first plot. In the second one without the name, the entire view of the cluster structure can be seen clearly.

    The following two scatter plots display the same underlying risk cluster structure: the first one with the names of neighbourhoods; the second without the names. In the first plot, the densely plotted names at the left bottom are obstructing the view of individual datapoints ('non-outlier neighbourhoods') in the first plot. In the second one without the name, the entire view of the cluster structure can be seen clearly.

    Top 5 Popular Summary (Top 5 Popular Summary)

    In addition, I also include a summary table to present the top 5 popular venue categories for each neighbourhood, sorted by the cluster’s risk profile (in ascending order of Centroid_Grade) and the number of Foursquare venue response (in descending order of Venue Response). In this sorted order, the Client can view the list of neighbourhoods in the following manner: from the safest cluster to more risker ones; from presumably the commercially busiest neighbourhood to less busier ones.

    In addition, I also include a summary table to present the top 5 popular venue categories for each neighbourhood, sorted by the cluster's risk profile (in ascending order of Centroid_Grade) and the number of Foursquare venue response (in descending order of Venue Response). In this sorted order, the Client can view the list of neighbourhoods in the following manner: from the safest cluster to more risker ones; from presumably the commercially busiest neighbourhood to less busier ones.

    Since the table is very long, here I would present only the top 7 rows of the table.

    Since the table is very long, here I would present only the top 7 rows of the table.

    That’s all about my very first Data Science Capstone Project.

    That's all about my very first Data Science Capstone Project.

    Thank you very much for reading through this article.

    Thank you very much for reading through this article.

    Michio Suginoo

    Michio Suginoo

    翻譯自: https://medium.com/@msuginoo/three-different-lessons-from-three-different-clustering-analyses-data-science-capstone-5f2be29cb3b2

    普里姆從不同頂點出發

    總結

    以上是生活随笔為你收集整理的普里姆从不同顶点出发_来自三个不同聚类分析的三个不同教训数据科学的顶点...的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    风流少妇按摩来高潮 | 77777熟女视频在线观看 а天堂中文在线官网 | 日韩精品乱码av一区二区 | 国产精品亚洲а∨无码播放麻豆 | 成人免费视频视频在线观看 免费 | 欧美精品无码一区二区三区 | 水蜜桃色314在线观看 | 久久伊人色av天堂九九小黄鸭 | 国产无av码在线观看 | 精品国产一区av天美传媒 | 日日躁夜夜躁狠狠躁 | 亚洲の无码国产の无码影院 | 无码一区二区三区在线 | 国产精品久久久久久亚洲影视内衣 | 色欲久久久天天天综合网精品 | 国产精品久久久久久亚洲影视内衣 | 国产精品a成v人在线播放 | 天天做天天爱天天爽综合网 | 极品尤物被啪到呻吟喷水 | 水蜜桃色314在线观看 | 天天躁夜夜躁狠狠是什么心态 | 亚洲人成网站色7799 | 无码av免费一区二区三区试看 | 成人亚洲精品久久久久软件 | 亚洲精品一区三区三区在线观看 | 青春草在线视频免费观看 | 成人精品天堂一区二区三区 | 日本va欧美va欧美va精品 | 日本精品少妇一区二区三区 | av在线亚洲欧洲日产一区二区 | 97久久超碰中文字幕 | 久久精品99久久香蕉国产色戒 | 伊人久久大香线焦av综合影院 | 红桃av一区二区三区在线无码av | 免费无码肉片在线观看 | 中文字幕无码人妻少妇免费 | 欧美日韩一区二区三区自拍 | 国产精品视频免费播放 | 欧美老妇与禽交 | 日本护士xxxxhd少妇 | 一个人看的视频www在线 | 日日摸天天摸爽爽狠狠97 | 久久天天躁夜夜躁狠狠 | 久久综合激激的五月天 | 国产 浪潮av性色四虎 | 精品无码av一区二区三区 | 妺妺窝人体色www在线小说 | 日韩av无码中文无码电影 | 四虎永久在线精品免费网址 | 欧美成人午夜精品久久久 | 一本久久a久久精品亚洲 | 免费观看的无遮挡av | 牲欲强的熟妇农村老妇女视频 | 99久久精品午夜一区二区 | 日本大乳高潮视频在线观看 | 久久久精品人妻久久影视 | 免费网站看v片在线18禁无码 | 日本丰满护士爆乳xxxx | 久久99精品久久久久婷婷 | 99精品久久毛片a片 | 狠狠cao日日穞夜夜穞av | www一区二区www免费 | 狂野欧美性猛xxxx乱大交 | 中文字幕久久久久人妻 | 无码国内精品人妻少妇 | 狂野欧美性猛xxxx乱大交 | 欧美人与禽猛交狂配 | 中文字幕人妻丝袜二区 | 日本一区二区三区免费高清 | 欧美性色19p | 牲欲强的熟妇农村老妇女视频 | 强伦人妻一区二区三区视频18 | 久久久久久亚洲精品a片成人 | а√天堂www在线天堂小说 | 色婷婷av一区二区三区之红樱桃 | 国产69精品久久久久app下载 | 丝袜美腿亚洲一区二区 | 久久久久久久人妻无码中文字幕爆 | 人人爽人人澡人人高潮 | 欧美熟妇另类久久久久久不卡 | 欧美三级a做爰在线观看 | 国产真人无遮挡作爱免费视频 | 国产农村妇女高潮大叫 | 欧美怡红院免费全部视频 | 久久99精品国产麻豆 | 国产在线精品一区二区三区直播 | 少妇的肉体aa片免费 | 亚洲一区二区三区无码久久 | 国产成人无码专区 | 国内精品人妻无码久久久影院 | 国产色精品久久人妻 | 对白脏话肉麻粗话av | 亚洲综合精品香蕉久久网 | 国产精品久久精品三级 | 午夜精品久久久久久久久 | 国产又爽又黄又刺激的视频 | 久久国产自偷自偷免费一区调 | 又湿又紧又大又爽a视频国产 | 国产亚洲精品久久久闺蜜 | 国产无遮挡又黄又爽又色 | 欧美三级不卡在线观看 | 中国女人内谢69xxxxxa片 | 亚洲国产精品美女久久久久 | www成人国产高清内射 | 国产午夜亚洲精品不卡 | 国产无遮挡又黄又爽又色 | 国内丰满熟女出轨videos | 欧美丰满老熟妇xxxxx性 | 亚洲 欧美 激情 小说 另类 | 成人免费视频视频在线观看 免费 | 亚洲va中文字幕无码久久不卡 | 麻豆md0077饥渴少妇 | 亚洲精品久久久久中文第一幕 | 亚洲欧洲无卡二区视頻 | 亚洲中文字幕乱码av波多ji | 欧美激情综合亚洲一二区 | 捆绑白丝粉色jk震动捧喷白浆 | 亚洲欧美色中文字幕在线 | 福利一区二区三区视频在线观看 | 欧美精品一区二区精品久久 | 国产99久久精品一区二区 | 天堂亚洲2017在线观看 | 亚洲精品国产精品乱码视色 | 国产猛烈高潮尖叫视频免费 | 国产一区二区不卡老阿姨 | 国产明星裸体无码xxxx视频 | 久久久国产一区二区三区 | 俺去俺来也在线www色官网 | 精品国产一区二区三区四区在线看 | а√天堂www在线天堂小说 | 久久久www成人免费毛片 | 色一情一乱一伦一视频免费看 | 精品少妇爆乳无码av无码专区 | 无遮挡国产高潮视频免费观看 | 亚洲一区二区三区国产精华液 | 精品无码一区二区三区爱欲 | 亚拍精品一区二区三区探花 | 牲欲强的熟妇农村老妇女 | 国产熟女一区二区三区四区五区 | 久久亚洲精品中文字幕无男同 | 久久久www成人免费毛片 | 日本丰满熟妇videos | 国产香蕉97碰碰久久人人 | 日日橹狠狠爱欧美视频 | 午夜无码区在线观看 | 丰腴饱满的极品熟妇 | 一本色道久久综合狠狠躁 | 久久久亚洲欧洲日产国码αv | 亚洲国产精品无码一区二区三区 | 国内丰满熟女出轨videos | 久久久亚洲欧洲日产国码αv | 色妞www精品免费视频 | 精品无人区无码乱码毛片国产 | 亚洲中文字幕无码中文字在线 | 国产麻豆精品一区二区三区v视界 | 中文字幕日产无线码一区 | 丰满人妻被黑人猛烈进入 | 午夜免费福利小电影 | 性做久久久久久久免费看 | 国产人妻精品一区二区三区 | 亚洲国产欧美国产综合一区 | 国产免费久久精品国产传媒 | 一本久久a久久精品亚洲 | 水蜜桃亚洲一二三四在线 | 一本无码人妻在中文字幕免费 | 午夜精品一区二区三区在线观看 | 国产精品久免费的黄网站 | 成人动漫在线观看 | 国产精品久久久av久久久 | 小sao货水好多真紧h无码视频 | 久久精品视频在线看15 | 夜精品a片一区二区三区无码白浆 | 水蜜桃亚洲一二三四在线 | 亚洲s码欧洲m码国产av | 日本一区二区更新不卡 | 中文字幕无码av波多野吉衣 | 亚洲无人区午夜福利码高清完整版 | 漂亮人妻洗澡被公强 日日躁 | 亚洲国产精品一区二区第一页 | 亚洲精品一区二区三区在线观看 | 欧美性生交活xxxxxdddd | 亚洲天堂2017无码 | 少妇高潮一区二区三区99 | 性生交大片免费看l | 国内揄拍国内精品少妇国语 | 亚洲一区二区观看播放 | 色婷婷久久一区二区三区麻豆 | 亚洲国产欧美在线成人 | 欧美人妻一区二区三区 | 亚洲国产精品一区二区第一页 | 久久久国产一区二区三区 | 无码毛片视频一区二区本码 | 国产无套内射久久久国产 | 高潮毛片无遮挡高清免费视频 | 亚洲春色在线视频 | 色婷婷av一区二区三区之红樱桃 | 人妻插b视频一区二区三区 | 对白脏话肉麻粗话av | 国产精品久久久久7777 | v一区无码内射国产 | 99久久人妻精品免费一区 | 欧美成人免费全部网站 | 国产乱人无码伦av在线a | 无码av免费一区二区三区试看 | 久久精品一区二区三区四区 | 国产精品久免费的黄网站 | 亚洲啪av永久无码精品放毛片 | 俄罗斯老熟妇色xxxx | 国产亚洲精品久久久ai换 | 国产色xx群视频射精 | 蜜桃视频插满18在线观看 | 水蜜桃av无码 | 日韩欧美群交p片內射中文 | 97久久精品无码一区二区 | 欧美 日韩 人妻 高清 中文 | 国产特级毛片aaaaaa高潮流水 | 日日天日日夜日日摸 | 久久久久久亚洲精品a片成人 | 亚洲日韩av片在线观看 | 给我免费的视频在线观看 | 少妇人妻av毛片在线看 | 99riav国产精品视频 | 中文无码精品a∨在线观看不卡 | 黑人巨大精品欧美黑寡妇 | 97人妻精品一区二区三区 | 无码吃奶揉捏奶头高潮视频 | 色综合视频一区二区三区 | 久久人妻内射无码一区三区 | 精品国产福利一区二区 | 人妻无码久久精品人妻 | 国内精品久久毛片一区二区 | 国产av无码专区亚洲a∨毛片 | 成人动漫在线观看 | 久久国产精品偷任你爽任你 | 曰韩少妇内射免费播放 | 欧美黑人巨大xxxxx | 骚片av蜜桃精品一区 | 在线欧美精品一区二区三区 | 人人妻在人人 | 国内综合精品午夜久久资源 | 中国女人内谢69xxxx | 天天av天天av天天透 | 亚洲啪av永久无码精品放毛片 | 亚洲欧美精品伊人久久 | 午夜成人1000部免费视频 | 特级做a爰片毛片免费69 | 澳门永久av免费网站 | 少妇厨房愉情理9仑片视频 | www国产亚洲精品久久网站 | 一本久久伊人热热精品中文字幕 | 成人片黄网站色大片免费观看 | 精品国产精品久久一区免费式 | 亚洲男女内射在线播放 | 亚洲天堂2017无码 | 夜夜影院未满十八勿进 | 一本无码人妻在中文字幕免费 | 国产精品二区一区二区aⅴ污介绍 | 福利一区二区三区视频在线观看 | 麻豆国产97在线 | 欧洲 | 色综合视频一区二区三区 | 亚洲爆乳精品无码一区二区三区 | 亚洲欧美色中文字幕在线 | 亚洲精品国产第一综合99久久 | 精品一区二区三区波多野结衣 | 成熟女人特级毛片www免费 | 中文字幕日产无线码一区 | 免费观看黄网站 | 国产成人无码av在线影院 | 亚洲小说春色综合另类 | 中文字幕av日韩精品一区二区 | 国产精品亚洲一区二区三区喷水 | 欧美精品免费观看二区 | 无码播放一区二区三区 | 国产免费无码一区二区视频 | 亚洲a无码综合a国产av中文 | 牲欲强的熟妇农村老妇女 | 少妇激情av一区二区 | 国产精品毛多多水多 | 扒开双腿疯狂进出爽爽爽视频 | 18黄暴禁片在线观看 | 亚洲综合久久一区二区 | 无码国产激情在线观看 | 久久这里只有精品视频9 | 久久无码专区国产精品s | 清纯唯美经典一区二区 | 亚洲国产精品一区二区美利坚 | 久久午夜无码鲁丝片秋霞 | 天天摸天天透天天添 | 国产午夜亚洲精品不卡下载 | 亚洲国产精品无码一区二区三区 | 国产熟妇高潮叫床视频播放 | 日韩av无码一区二区三区不卡 | 欧洲欧美人成视频在线 | 人妻熟女一区 | 无码人妻丰满熟妇区五十路百度 | 乱人伦中文视频在线观看 | 亚洲热妇无码av在线播放 | 亚洲日韩av一区二区三区四区 | 欧美国产日产一区二区 | 日本一区二区三区免费播放 | 国产农村乱对白刺激视频 | 妺妺窝人体色www婷婷 | 高潮喷水的毛片 | 男女爱爱好爽视频免费看 | 亚洲一区二区三区偷拍女厕 | 欧美成人家庭影院 | 欧美高清在线精品一区 | 中文字幕+乱码+中文字幕一区 | 国产乱人无码伦av在线a | 草草网站影院白丝内射 | 亚洲国产精品毛片av不卡在线 | 久青草影院在线观看国产 | 亚洲日韩一区二区三区 | 麻豆蜜桃av蜜臀av色欲av | 人妻夜夜爽天天爽三区 | 狠狠色丁香久久婷婷综合五月 | 久久国产精品二国产精品 | 色欲av亚洲一区无码少妇 | 国产精品视频免费播放 | 欧美日韩人成综合在线播放 | 亚洲精品国产精品乱码视色 | av无码久久久久不卡免费网站 | 女人高潮内射99精品 | 国产av一区二区精品久久凹凸 | 97无码免费人妻超级碰碰夜夜 | 天天躁日日躁狠狠躁免费麻豆 | 亚洲欧美日韩成人高清在线一区 | 国产免费久久精品国产传媒 | 国产精品毛多多水多 | 日本丰满熟妇videos | 无码人妻黑人中文字幕 | 激情综合激情五月俺也去 | 粗大的内捧猛烈进出视频 | www国产精品内射老师 | 一区二区传媒有限公司 | 蜜桃视频插满18在线观看 | 台湾无码一区二区 | 欧美人与动性行为视频 | 日韩精品乱码av一区二区 | 国产精品理论片在线观看 | 欧美日韩综合一区二区三区 | 欧美丰满熟妇xxxx | 精品国精品国产自在久国产87 | 国产成人av免费观看 | 人人妻人人藻人人爽欧美一区 | 婷婷丁香五月天综合东京热 | 夜夜影院未满十八勿进 | 最新版天堂资源中文官网 | 色婷婷久久一区二区三区麻豆 | 欧美人与牲动交xxxx | 国产国语老龄妇女a片 | 天堂无码人妻精品一区二区三区 | 欧美精品免费观看二区 | 精品无码一区二区三区爱欲 | 中文字幕av伊人av无码av | 国产极品视觉盛宴 | 久久精品国产一区二区三区肥胖 | 久久久久se色偷偷亚洲精品av | 精品夜夜澡人妻无码av蜜桃 | 欧美zoozzooz性欧美 | 东京一本一道一二三区 | 成在人线av无码免观看麻豆 | 熟妇人妻激情偷爽文 | 国产一精品一av一免费 | 玩弄人妻少妇500系列视频 | 国产成人综合在线女婷五月99播放 | 国产成人无码av在线影院 | 国产精品亚洲一区二区三区喷水 | 无码人妻精品一区二区三区下载 | 国产97人人超碰caoprom | 欧美亚洲国产一区二区三区 | 97精品人妻一区二区三区香蕉 | 精品厕所偷拍各类美女tp嘘嘘 | √天堂中文官网8在线 | 精品亚洲成av人在线观看 | 欧美刺激性大交 | 激情亚洲一区国产精品 | 人人妻人人澡人人爽人人精品浪潮 | 日本丰满护士爆乳xxxx | 无码帝国www无码专区色综合 | 国产免费无码一区二区视频 | 久久成人a毛片免费观看网站 | 亚洲人成影院在线无码按摩店 | 亚洲综合久久一区二区 | 成人aaa片一区国产精品 | 日日天干夜夜狠狠爱 | 成人欧美一区二区三区黑人免费 | 免费国产黄网站在线观看 | 亚洲大尺度无码无码专区 | 美女黄网站人色视频免费国产 | 97精品人妻一区二区三区香蕉 | 国产精品无码永久免费888 | 国产性生大片免费观看性 | 欧美三级不卡在线观看 | 亚洲国产精品一区二区美利坚 | 一本久久a久久精品亚洲 | 久久无码专区国产精品s | www国产亚洲精品久久网站 | 无码av免费一区二区三区试看 | 黑人大群体交免费视频 | 少女韩国电视剧在线观看完整 | 亚洲乱码国产乱码精品精 | 激情综合激情五月俺也去 | 中文字幕人妻无码一区二区三区 | 国产两女互慰高潮视频在线观看 | 欧美 亚洲 国产 另类 | 日本www一道久久久免费榴莲 | 久久无码中文字幕免费影院蜜桃 | www成人国产高清内射 | 又色又爽又黄的美女裸体网站 | 国精品人妻无码一区二区三区蜜柚 | 欧美放荡的少妇 | 人人超人人超碰超国产 | 国产亚洲人成在线播放 | 国内精品九九久久久精品 | 特黄特色大片免费播放器图片 | 九九热爱视频精品 | 在线播放亚洲第一字幕 | 亚洲精品一区三区三区在线观看 | 老熟妇仑乱视频一区二区 | 一本大道久久东京热无码av | 国内揄拍国内精品少妇国语 | 最新版天堂资源中文官网 | 丰满人妻被黑人猛烈进入 | 巨爆乳无码视频在线观看 | 亚洲精品国偷拍自产在线麻豆 | 久久国产精品二国产精品 | 麻豆精品国产精华精华液好用吗 | 精品国产麻豆免费人成网站 | 久久精品人人做人人综合试看 | 九九久久精品国产免费看小说 | 国产av人人夜夜澡人人爽麻豆 | 美女毛片一区二区三区四区 | 中文字幕av日韩精品一区二区 | 国产一区二区三区日韩精品 | 亚洲国产精品毛片av不卡在线 | 国产精品自产拍在线观看 | 午夜精品一区二区三区的区别 | 欧美激情综合亚洲一二区 | 精品夜夜澡人妻无码av蜜桃 | 国精产品一区二区三区 | 国产成人无码av在线影院 | 无码人妻久久一区二区三区不卡 | 欧美真人作爱免费视频 | √天堂中文官网8在线 | 精品人人妻人人澡人人爽人人 | 日日碰狠狠躁久久躁蜜桃 | 国产凸凹视频一区二区 | 久久久www成人免费毛片 | 日产精品高潮呻吟av久久 | 欧美日本精品一区二区三区 | 99久久亚洲精品无码毛片 | 色婷婷av一区二区三区之红樱桃 | 精品水蜜桃久久久久久久 | 国产精华av午夜在线观看 | 亚洲精品综合五月久久小说 | 精品少妇爆乳无码av无码专区 | 午夜福利试看120秒体验区 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲爆乳无码专区 | 久久久久国色av免费观看性色 | 成人免费视频视频在线观看 免费 | 成人精品一区二区三区中文字幕 | 2020最新国产自产精品 | 狂野欧美激情性xxxx | 国产手机在线αⅴ片无码观看 | 亚洲第一网站男人都懂 | 成人无码精品1区2区3区免费看 | 国产特级毛片aaaaaaa高清 | 激情爆乳一区二区三区 | 中文无码成人免费视频在线观看 | 巨爆乳无码视频在线观看 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产亚洲欧美日韩亚洲中文色 | 国精产品一品二品国精品69xx | 国产性生交xxxxx无码 | 黑人巨大精品欧美黑寡妇 | 日本精品久久久久中文字幕 | 欧美日韩久久久精品a片 | 色综合久久久无码网中文 | 国产欧美熟妇另类久久久 | 亚洲大尺度无码无码专区 | 国产精品久免费的黄网站 | 人人妻人人澡人人爽人人精品浪潮 | 波多野结衣av一区二区全免费观看 | 国产成人人人97超碰超爽8 | 亚洲中文字幕va福利 | 欧美丰满少妇xxxx性 | 99精品国产综合久久久久五月天 | 最新国产乱人伦偷精品免费网站 | 欧美日韩一区二区免费视频 | 野外少妇愉情中文字幕 | 中文字幕无码av激情不卡 | 一本久道久久综合狠狠爱 | 精品国产精品久久一区免费式 | 国产另类ts人妖一区二区 | 福利一区二区三区视频在线观看 | 色五月五月丁香亚洲综合网 | 一本久久伊人热热精品中文字幕 | 亚洲成a人片在线观看日本 | 午夜理论片yy44880影院 | 国内精品人妻无码久久久影院蜜桃 | 国产亚洲精品久久久久久久久动漫 | 四虎国产精品免费久久 | 国产黄在线观看免费观看不卡 | 亚洲の无码国产の无码步美 | 免费男性肉肉影院 | 国产女主播喷水视频在线观看 | 国产香蕉97碰碰久久人人 | av小次郎收藏 | 久久午夜无码鲁丝片秋霞 | 午夜精品一区二区三区在线观看 | 香港三级日本三级妇三级 | 一二三四在线观看免费视频 | 四虎4hu永久免费 | 男人扒开女人内裤强吻桶进去 | 国产色精品久久人妻 | 无码av免费一区二区三区试看 | 久久精品视频在线看15 | 天天拍夜夜添久久精品大 | 国产成人综合色在线观看网站 | 无码人妻精品一区二区三区不卡 | 麻豆国产97在线 | 欧洲 | 大地资源网第二页免费观看 | 一本久久伊人热热精品中文字幕 | 久久亚洲精品成人无码 | 东京热无码av男人的天堂 | 最近中文2019字幕第二页 | 欧美激情内射喷水高潮 | 精品国产一区av天美传媒 | 水蜜桃亚洲一二三四在线 | 欧美熟妇另类久久久久久多毛 | 欧美国产日韩亚洲中文 | 最近的中文字幕在线看视频 | 无码国模国产在线观看 | 伊人久久大香线蕉午夜 | 亚洲精品无码人妻无码 | 国产av人人夜夜澡人人爽麻豆 | 一区二区三区乱码在线 | 欧洲 | 人人妻人人藻人人爽欧美一区 | 亚洲国产成人av在线观看 | 精品无码国产自产拍在线观看蜜 | 久久五月精品中文字幕 | 76少妇精品导航 | 美女极度色诱视频国产 | 国语自产偷拍精品视频偷 | 性欧美videos高清精品 | 好男人社区资源 | 丰满护士巨好爽好大乳 | 俺去俺来也在线www色官网 | 国语自产偷拍精品视频偷 | 亚洲精品鲁一鲁一区二区三区 | 国产色精品久久人妻 | 久久久无码中文字幕久... | 国产麻豆精品一区二区三区v视界 | 成人免费视频在线观看 | 一本大道久久东京热无码av | 婷婷丁香六月激情综合啪 | 国产激情综合五月久久 | 国产av无码专区亚洲a∨毛片 | 国产三级精品三级男人的天堂 | 国产精品va在线观看无码 | 波多野结衣乳巨码无在线观看 | 亚洲一区二区三区含羞草 | 久久精品国产大片免费观看 | 亚洲熟熟妇xxxx | 人人爽人人澡人人人妻 | 久久午夜无码鲁丝片午夜精品 | 欧美人与牲动交xxxx | 免费观看的无遮挡av | 欧美熟妇另类久久久久久不卡 | 久久亚洲日韩精品一区二区三区 | 亚洲欧洲日本综合aⅴ在线 | 亚洲综合在线一区二区三区 | 清纯唯美经典一区二区 | 午夜福利一区二区三区在线观看 | 精品夜夜澡人妻无码av蜜桃 | 日本一区二区更新不卡 | 国产在线精品一区二区高清不卡 | 亚洲欧美日韩成人高清在线一区 | 成人三级无码视频在线观看 | 97夜夜澡人人双人人人喊 | 全球成人中文在线 | 国产精品理论片在线观看 | 97精品人妻一区二区三区香蕉 | 日日夜夜撸啊撸 | 国产高清av在线播放 | 国产成人一区二区三区在线观看 | 特黄特色大片免费播放器图片 | 亚洲自偷自偷在线制服 | 奇米影视7777久久精品 | 久久精品中文闷骚内射 | 美女毛片一区二区三区四区 | 天堂久久天堂av色综合 | 六十路熟妇乱子伦 | 久激情内射婷内射蜜桃人妖 | 一本久久a久久精品亚洲 | 欧美性黑人极品hd | 999久久久国产精品消防器材 | 久久国产36精品色熟妇 | 综合激情五月综合激情五月激情1 | 亚洲精品国产精品乱码不卡 | 国产人成高清在线视频99最全资源 | 人人澡人摸人人添 | 精品无码国产一区二区三区av | 久久精品国产一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 2020久久香蕉国产线看观看 | 红桃av一区二区三区在线无码av | 强辱丰满人妻hd中文字幕 | 精品国产一区二区三区四区在线看 | 性色欲网站人妻丰满中文久久不卡 | 久久国产精品_国产精品 | 天天爽夜夜爽夜夜爽 | 无码纯肉视频在线观看 | 国产精品美女久久久久av爽李琼 | 国产精品.xx视频.xxtv | 国产在线无码精品电影网 | 天天摸天天碰天天添 | 欧美熟妇另类久久久久久不卡 | 国产在线一区二区三区四区五区 | 成人精品视频一区二区三区尤物 | 一个人免费观看的www视频 | 日日摸夜夜摸狠狠摸婷婷 | 波多野结衣av在线观看 | 99精品国产综合久久久久五月天 | 久久人人爽人人爽人人片ⅴ | 激情国产av做激情国产爱 | 日韩人妻无码中文字幕视频 | 午夜精品久久久久久久久 | 无码人妻精品一区二区三区不卡 | 青青草原综合久久大伊人精品 | 欧美熟妇另类久久久久久多毛 | 熟妇激情内射com | 人妻有码中文字幕在线 | 无码人妻久久一区二区三区不卡 | 未满小14洗澡无码视频网站 | 人妻少妇精品无码专区二区 | 成在人线av无码免观看麻豆 | 午夜福利一区二区三区在线观看 | 久久综合色之久久综合 | 无码人妻久久一区二区三区不卡 | 无码乱肉视频免费大全合集 | 疯狂三人交性欧美 | 国产成人午夜福利在线播放 | v一区无码内射国产 | 日本丰满护士爆乳xxxx | 亚洲精品无码国产 | 台湾无码一区二区 | 在线а√天堂中文官网 | а√天堂www在线天堂小说 | 亚洲第一网站男人都懂 | aⅴ亚洲 日韩 色 图网站 播放 | 国内丰满熟女出轨videos | 精品国产麻豆免费人成网站 | 激情人妻另类人妻伦 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 久久天天躁狠狠躁夜夜免费观看 | 国产成人精品视频ⅴa片软件竹菊 | 国产农村妇女高潮大叫 | 红桃av一区二区三区在线无码av | 亚洲中文字幕乱码av波多ji | 夜夜躁日日躁狠狠久久av | 搡女人真爽免费视频大全 | 蜜桃无码一区二区三区 | 97夜夜澡人人爽人人喊中国片 | 少妇无套内谢久久久久 | 无码人妻久久一区二区三区不卡 | 成年美女黄网站色大免费全看 | 国产99久久精品一区二区 | 亚洲国产成人av在线观看 | 欧美黑人性暴力猛交喷水 | 九九在线中文字幕无码 | 欧美老人巨大xxxx做受 | 99久久亚洲精品无码毛片 | 亚洲精品一区二区三区在线 | 男女作爱免费网站 | 欧美老熟妇乱xxxxx | 久久久久久国产精品无码下载 | 99久久人妻精品免费一区 | 国产精品高潮呻吟av久久4虎 | 久久国产36精品色熟妇 | 亚洲日韩av一区二区三区四区 | 国产乱码精品一品二品 | 日本一卡二卡不卡视频查询 | 日韩av无码一区二区三区 | 日韩av无码一区二区三区不卡 | 老子影院午夜精品无码 | 东京无码熟妇人妻av在线网址 | 久久精品成人欧美大片 | 波多野结衣乳巨码无在线观看 | 亚洲国产精品久久久天堂 | 97色伦图片97综合影院 | av无码不卡在线观看免费 | 亚洲人成人无码网www国产 | 久久久中文字幕日本无吗 | 色婷婷久久一区二区三区麻豆 | 国产热a欧美热a在线视频 | 88国产精品欧美一区二区三区 | 精品无码国产自产拍在线观看蜜 | 在线亚洲高清揄拍自拍一品区 | 偷窥日本少妇撒尿chinese | 久久久久久久女国产乱让韩 | 亚洲日本va中文字幕 | 成人欧美一区二区三区黑人 | 久久久精品国产sm最大网站 | 天堂亚洲2017在线观看 | 久久久亚洲欧洲日产国码αv | 亚洲热妇无码av在线播放 | 人妻有码中文字幕在线 | 久久久精品欧美一区二区免费 | 亚洲精品综合五月久久小说 | 中文精品无码中文字幕无码专区 | 免费无码一区二区三区蜜桃大 | 亚洲无人区一区二区三区 | 欧美人与善在线com | 亚洲国产精品美女久久久久 | 在线精品亚洲一区二区 | 97无码免费人妻超级碰碰夜夜 | 成熟女人特级毛片www免费 | 人妻少妇精品无码专区二区 | 国产精品亚洲综合色区韩国 | 久久久精品欧美一区二区免费 | 国产深夜福利视频在线 | 亚洲国产高清在线观看视频 | 曰韩无码二三区中文字幕 | 天天燥日日燥 | 亚洲色大成网站www国产 | 国产网红无码精品视频 | 奇米影视7777久久精品人人爽 | 熟妇人妻中文av无码 | 国产真实乱对白精彩久久 | 亚洲国产精品无码久久久久高潮 | 久久久久成人精品免费播放动漫 | 日本在线高清不卡免费播放 | 亚洲狠狠婷婷综合久久 | 少妇久久久久久人妻无码 | 性开放的女人aaa片 | 久久zyz资源站无码中文动漫 | 美女极度色诱视频国产 | 久久国产精品萌白酱免费 | 麻豆国产人妻欲求不满 | 亚洲国产精品成人久久蜜臀 | 国语精品一区二区三区 | 曰本女人与公拘交酡免费视频 | 久久99精品国产.久久久久 | 又大又硬又爽免费视频 | 国产免费无码一区二区视频 | 伊人久久大香线蕉av一区二区 | 精品无码一区二区三区的天堂 | 亚拍精品一区二区三区探花 | 久久人人爽人人爽人人片av高清 | 亚洲国产午夜精品理论片 | 永久黄网站色视频免费直播 | 精品无码成人片一区二区98 | 国语精品一区二区三区 | 久久99精品久久久久久动态图 | 国产精品国产三级国产专播 | 东京热无码av男人的天堂 | 无码人妻出轨黑人中文字幕 | 色一情一乱一伦一视频免费看 | 国内精品九九久久久精品 | 国产精品美女久久久 | 精品无人国产偷自产在线 | 久在线观看福利视频 | 精品无码一区二区三区爱欲 | a片免费视频在线观看 | 午夜熟女插插xx免费视频 | 美女黄网站人色视频免费国产 | www国产亚洲精品久久网站 | 色一情一乱一伦一区二区三欧美 | 国产美女精品一区二区三区 | 成人亚洲精品久久久久 | 亚洲人成网站在线播放942 | 亚洲狠狠色丁香婷婷综合 | 成年美女黄网站色大免费视频 | 日本大乳高潮视频在线观看 | 国产美女精品一区二区三区 | 少妇性荡欲午夜性开放视频剧场 | 国产精品久久久久久亚洲毛片 | 女人被爽到呻吟gif动态图视看 | 亚洲七七久久桃花影院 | www国产精品内射老师 | 国产农村妇女高潮大叫 | 国产人妻精品一区二区三区不卡 | 樱花草在线播放免费中文 | 夜先锋av资源网站 | 亚洲男女内射在线播放 | 老太婆性杂交欧美肥老太 | 亚洲精品久久久久久久久久久 | 丰满人妻一区二区三区免费视频 | 四虎国产精品免费久久 | 亚洲中文字幕av在天堂 | 无码播放一区二区三区 | 图片区 小说区 区 亚洲五月 | 午夜丰满少妇性开放视频 | 无码国内精品人妻少妇 | 日本xxxx色视频在线观看免费 | 动漫av一区二区在线观看 | 18禁黄网站男男禁片免费观看 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 久久aⅴ免费观看 | 中文无码成人免费视频在线观看 | 内射老妇bbwx0c0ck | 又大又硬又黄的免费视频 | 帮老师解开蕾丝奶罩吸乳网站 | 精品久久久无码人妻字幂 | 国产特级毛片aaaaaa高潮流水 | 久久人人爽人人爽人人片av高清 | 精品久久综合1区2区3区激情 | 色欲av亚洲一区无码少妇 | 亚洲精品中文字幕久久久久 | 成人免费视频在线观看 | 国产精品久久久久无码av色戒 | 国产超碰人人爽人人做人人添 | 欧美亚洲国产一区二区三区 | 久久精品人人做人人综合试看 | 亚洲色成人中文字幕网站 | 香港三级日本三级妇三级 | 国色天香社区在线视频 | 亚洲大尺度无码无码专区 | 国产真实伦对白全集 | 亚洲精品久久久久avwww潮水 | 欧美精品在线观看 | 成年美女黄网站色大免费全看 | 久久久亚洲欧洲日产国码αv | 天堂无码人妻精品一区二区三区 | 中文字幕人妻无码一区二区三区 | 国产精品资源一区二区 | 亚洲s码欧洲m码国产av | 亚洲精品一区二区三区四区五区 | 亚洲狠狠婷婷综合久久 | 欧美精品免费观看二区 | 国产成人精品优优av | 性啪啪chinese东北女人 | 扒开双腿疯狂进出爽爽爽视频 | 亚洲熟妇色xxxxx欧美老妇y | 亚洲成av人影院在线观看 | 午夜丰满少妇性开放视频 | 亚洲熟妇自偷自拍另类 | 午夜精品久久久久久久久 | 亚洲国产欧美在线成人 | 日韩欧美群交p片內射中文 | 欧美性黑人极品hd | 97无码免费人妻超级碰碰夜夜 | 人人妻人人澡人人爽欧美一区 | 中文字幕无码免费久久9一区9 | 国产美女精品一区二区三区 | 成年美女黄网站色大免费全看 | 丰满肥臀大屁股熟妇激情视频 | 亚洲精品无码人妻无码 | 又大又硬又黄的免费视频 | 亚洲中文字幕av在天堂 | 久久国产36精品色熟妇 | 2019nv天堂香蕉在线观看 | 一区二区传媒有限公司 | 国产精品久久精品三级 | 久久99精品国产麻豆蜜芽 | 自拍偷自拍亚洲精品被多人伦好爽 | 国产69精品久久久久app下载 | 久久精品国产99久久6动漫 | 日韩 欧美 动漫 国产 制服 | 又紧又大又爽精品一区二区 | 任你躁国产自任一区二区三区 | 免费无码肉片在线观看 | 久久综合久久自在自线精品自 | 久久久久成人精品免费播放动漫 | 日本爽爽爽爽爽爽在线观看免 | 给我免费的视频在线观看 | 强伦人妻一区二区三区视频18 | 成人无码精品1区2区3区免费看 | 永久免费观看美女裸体的网站 | 天堂久久天堂av色综合 | 国产亚洲人成a在线v网站 | 亚洲成熟女人毛毛耸耸多 | 无码精品人妻一区二区三区av | 18精品久久久无码午夜福利 | 特黄特色大片免费播放器图片 | 日日麻批免费40分钟无码 | 十八禁视频网站在线观看 | 丰满人妻一区二区三区免费视频 | 中文字幕中文有码在线 | 亚洲一区二区三区偷拍女厕 | 人妻插b视频一区二区三区 | 亚洲乱码中文字幕在线 | 国产精品美女久久久网av | 国产凸凹视频一区二区 | 性色av无码免费一区二区三区 | 在线播放亚洲第一字幕 | 日本精品久久久久中文字幕 | 激情内射日本一区二区三区 | 欧美喷潮久久久xxxxx | 天堂无码人妻精品一区二区三区 | 国产精品资源一区二区 | 女人和拘做爰正片视频 | 欧美精品一区二区精品久久 | 成人免费视频视频在线观看 免费 | 狂野欧美激情性xxxx | 狂野欧美性猛xxxx乱大交 | 欧美老人巨大xxxx做受 | 免费观看激色视频网站 | 少妇一晚三次一区二区三区 | 免费国产成人高清在线观看网站 | 国内少妇偷人精品视频 | 久激情内射婷内射蜜桃人妖 | 亚洲精品一区二区三区四区五区 | а√资源新版在线天堂 | 久久精品中文字幕一区 | 亚洲国产欧美国产综合一区 | 亚洲s色大片在线观看 | 亚洲s色大片在线观看 | 中文精品久久久久人妻不卡 | 亚洲日韩av片在线观看 | 狂野欧美性猛xxxx乱大交 | 久久天天躁夜夜躁狠狠 | 国产成人无码午夜视频在线观看 | 99久久人妻精品免费一区 | 成人无码视频免费播放 | 国产精品永久免费视频 | 狂野欧美性猛xxxx乱大交 | 亚洲精品www久久久 | 中国女人内谢69xxxxxa片 | 精品久久8x国产免费观看 | 亚洲呦女专区 | 亚洲熟妇色xxxxx欧美老妇 | 精品国产麻豆免费人成网站 | 夜夜躁日日躁狠狠久久av | 欧美兽交xxxx×视频 | 成人综合网亚洲伊人 | 中文字幕av无码一区二区三区电影 | 久久久无码中文字幕久... | 亚洲熟女一区二区三区 | 国产午夜福利亚洲第一 | 少妇性l交大片 | 疯狂三人交性欧美 | 国产va免费精品观看 | 亚洲无人区午夜福利码高清完整版 | a片免费视频在线观看 | 亲嘴扒胸摸屁股激烈网站 | 国产真实伦对白全集 | 成人毛片一区二区 | 久久国产精品偷任你爽任你 | 亚洲精品国产a久久久久久 | 成人欧美一区二区三区黑人 | 男女作爱免费网站 | 亚洲s码欧洲m码国产av | 国产成人精品一区二区在线小狼 | 色综合久久网 | 日本va欧美va欧美va精品 | 又大又硬又爽免费视频 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 亚洲精品一区二区三区婷婷月 | 又色又爽又黄的美女裸体网站 | 日本又色又爽又黄的a片18禁 | 一区二区传媒有限公司 | 天天拍夜夜添久久精品 | 久久精品国产一区二区三区肥胖 | 男女下面进入的视频免费午夜 | 天天燥日日燥 | 亚洲日韩一区二区三区 | 特黄特色大片免费播放器图片 | 国产无遮挡又黄又爽免费视频 | 成人无码视频免费播放 | 丰满人妻翻云覆雨呻吟视频 | 日日躁夜夜躁狠狠躁 | 国产高潮视频在线观看 | 性欧美大战久久久久久久 | 国产婷婷色一区二区三区在线 | 国产精品鲁鲁鲁 | 大肉大捧一进一出好爽视频 | 日本乱人伦片中文三区 | 国产在线精品一区二区高清不卡 | 国产午夜精品一区二区三区嫩草 | 99久久精品无码一区二区毛片 | 国产 浪潮av性色四虎 | 亚洲中文字幕久久无码 | 亚洲性无码av中文字幕 | 成人欧美一区二区三区黑人免费 | 久久精品人妻少妇一区二区三区 | 人人爽人人澡人人高潮 | 捆绑白丝粉色jk震动捧喷白浆 | 亚洲の无码国产の无码步美 | 国产成人无码区免费内射一片色欲 | 麻豆果冻传媒2021精品传媒一区下载 | 九九热爱视频精品 | 国产农村乱对白刺激视频 | 国产亚洲精品久久久久久久 | √天堂资源地址中文在线 | 波多野42部无码喷潮在线 | 波多野结衣一区二区三区av免费 | 日韩精品无码一本二本三本色 | 风流少妇按摩来高潮 | 国产在线精品一区二区高清不卡 | 自拍偷自拍亚洲精品被多人伦好爽 | 国产手机在线αⅴ片无码观看 | 特大黑人娇小亚洲女 | 欧美丰满熟妇xxxx性ppx人交 | 亚洲 日韩 欧美 成人 在线观看 | 久久久国产一区二区三区 | 老太婆性杂交欧美肥老太 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 久久国语露脸国产精品电影 | 性欧美牲交在线视频 | 高中生自慰www网站 | 国产在线一区二区三区四区五区 | 国产9 9在线 | 中文 | av人摸人人人澡人人超碰下载 | 老太婆性杂交欧美肥老太 | 性欧美大战久久久久久久 | 无码播放一区二区三区 | 国产三级精品三级男人的天堂 | 国产三级久久久精品麻豆三级 | 人妻无码久久精品人妻 | 一本色道婷婷久久欧美 | 亚洲国产综合无码一区 | 性色欲情网站iwww九文堂 | 亚洲综合久久一区二区 | 夜夜夜高潮夜夜爽夜夜爰爰 | 福利一区二区三区视频在线观看 | 成人精品视频一区二区三区尤物 | 亚洲色偷偷偷综合网 | 狠狠噜狠狠狠狠丁香五月 | 真人与拘做受免费视频一 | 亚洲爆乳大丰满无码专区 | 18无码粉嫩小泬无套在线观看 | 日日碰狠狠躁久久躁蜜桃 | 免费无码的av片在线观看 | 亚洲精品国偷拍自产在线麻豆 | 亚洲高清偷拍一区二区三区 | 男人和女人高潮免费网站 | 伊人久久大香线蕉亚洲 | 午夜精品一区二区三区在线观看 | 国产精品福利视频导航 | 67194成是人免费无码 | 亚洲综合在线一区二区三区 | 久久99精品久久久久久动态图 | 国产激情精品一区二区三区 | 在线观看国产午夜福利片 | 婷婷丁香五月天综合东京热 | 高中生自慰www网站 | 中文字幕精品av一区二区五区 | 初尝人妻少妇中文字幕 | 国产乱子伦视频在线播放 | 在线播放免费人成毛片乱码 | 色 综合 欧美 亚洲 国产 | 成 人影片 免费观看 | 久久久无码中文字幕久... | 图片区 小说区 区 亚洲五月 | 亚洲熟女一区二区三区 | 久久99精品国产.久久久久 | 香港三级日本三级妇三级 | 亚洲爆乳精品无码一区二区三区 | 18禁止看的免费污网站 | 国产人妻精品一区二区三区不卡 | 亚洲综合在线一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 久久久久成人片免费观看蜜芽 | 国产亚洲人成a在线v网站 | 人人妻人人澡人人爽欧美精品 | 无码人妻丰满熟妇区毛片18 | 欧美freesex黑人又粗又大 | 亚洲一区二区三区国产精华液 | 精品国产麻豆免费人成网站 | 内射老妇bbwx0c0ck | 我要看www免费看插插视频 | 无码免费一区二区三区 | 一本加勒比波多野结衣 | 999久久久国产精品消防器材 | 午夜丰满少妇性开放视频 | 久久精品99久久香蕉国产色戒 | 免费网站看v片在线18禁无码 | 人妻少妇精品久久 | 中文字幕 亚洲精品 第1页 | 国产亚洲美女精品久久久2020 | www国产精品内射老师 | 激情爆乳一区二区三区 | 青青青爽视频在线观看 | 亚洲自偷精品视频自拍 | 国产人妻人伦精品1国产丝袜 | 九九在线中文字幕无码 | 国内老熟妇对白xxxxhd | 亚洲精品美女久久久久久久 | 成人精品视频一区二区三区尤物 | 久久午夜夜伦鲁鲁片无码免费 | 99麻豆久久久国产精品免费 | 国产亚洲精品精品国产亚洲综合 | 国产av剧情md精品麻豆 | 日本一区二区更新不卡 | 国产精品久久久久7777 | 国产香蕉尹人视频在线 | 亚洲色欲久久久综合网东京热 | 国产成人精品视频ⅴa片软件竹菊 | 亚洲人成人无码网www国产 | 天堂久久天堂av色综合 | 装睡被陌生人摸出水好爽 | √8天堂资源地址中文在线 | aa片在线观看视频在线播放 | 国产精华av午夜在线观看 | 国产亚洲日韩欧美另类第八页 | 欧美国产日产一区二区 | 日韩无套无码精品 | 久久久成人毛片无码 | 亚洲一区二区三区偷拍女厕 | 中文字幕乱码人妻无码久久 | 精品久久久久香蕉网 | 天天摸天天透天天添 | 国产又爽又猛又粗的视频a片 | 午夜丰满少妇性开放视频 | 亚洲人成无码网www | 少妇人妻av毛片在线看 | 国色天香社区在线视频 | 少妇被粗大的猛进出69影院 | 夜精品a片一区二区三区无码白浆 | 在教室伦流澡到高潮hnp视频 | 国产精品毛多多水多 | 亚洲日韩一区二区 | 性欧美牲交在线视频 | 熟妇人妻激情偷爽文 | 亚洲第一无码av无码专区 | 97久久国产亚洲精品超碰热 | 成人av无码一区二区三区 | 扒开双腿疯狂进出爽爽爽视频 | 扒开双腿疯狂进出爽爽爽视频 | 成人三级无码视频在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产亚洲精品久久久久久久久动漫 | 国产麻豆精品精东影业av网站 | 四虎影视成人永久免费观看视频 | 在线观看欧美一区二区三区 | 青青久在线视频免费观看 | 中文精品无码中文字幕无码专区 | 成人精品天堂一区二区三区 | 一本无码人妻在中文字幕免费 | 欧美熟妇另类久久久久久不卡 | 国产9 9在线 | 中文 | 精品无码av一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 99re在线播放 | 成年美女黄网站色大免费全看 | 欧美第一黄网免费网站 | 国产免费无码一区二区视频 | 又湿又紧又大又爽a视频国产 | 风流少妇按摩来高潮 | 亚洲经典千人经典日产 | 日本一卡2卡3卡四卡精品网站 | 人人妻人人澡人人爽人人精品 | aⅴ在线视频男人的天堂 | 精品一区二区不卡无码av | 国产成人无码午夜视频在线观看 | 国产精品18久久久久久麻辣 | 国产午夜视频在线观看 | 乱码午夜-极国产极内射 | 欧美丰满熟妇xxxx | 欧美肥老太牲交大战 | 国产精品毛片一区二区 | 日日橹狠狠爱欧美视频 | 领导边摸边吃奶边做爽在线观看 | 亚洲成在人网站无码天堂 | 欧美freesex黑人又粗又大 | 欧美日韩视频无码一区二区三 | 狠狠色欧美亚洲狠狠色www | 国内精品人妻无码久久久影院 | 日本xxxx色视频在线观看免费 | 精品国产aⅴ无码一区二区 | 动漫av一区二区在线观看 | 99精品国产综合久久久久五月天 | 久久久www成人免费毛片 | 久久精品99久久香蕉国产色戒 | 免费男性肉肉影院 | 欧美xxxx黑人又粗又长 | 国产肉丝袜在线观看 | 亚洲理论电影在线观看 | 亚洲精品国产精品乱码不卡 | 免费人成在线视频无码 | 2020久久香蕉国产线看观看 | 男人扒开女人内裤强吻桶进去 | 免费乱码人妻系列无码专区 | 国产精品沙发午睡系列 | 又粗又大又硬又长又爽 | 亚洲国产精品无码久久久久高潮 | 欧美三级a做爰在线观看 | 亚洲性无码av中文字幕 | 扒开双腿吃奶呻吟做受视频 | 午夜精品久久久久久久 | 少妇的肉体aa片免费 | 成人性做爰aaa片免费看不忠 | 色一情一乱一伦 | 免费人成在线视频无码 | 装睡被陌生人摸出水好爽 | 女人被爽到呻吟gif动态图视看 | 色欲久久久天天天综合网精品 | 欧美日韩一区二区综合 | 欧美人与牲动交xxxx | 丰满人妻一区二区三区免费视频 | 中文字幕无码日韩欧毛 | 亚洲色偷偷男人的天堂 | 国产97人人超碰caoprom | 偷窥日本少妇撒尿chinese | 精品国产一区二区三区av 性色 | 国产无套内射久久久国产 | 中文字幕无码免费久久9一区9 | 亚洲欧美国产精品久久 | 亚洲国产精品久久久久久 | 高清国产亚洲精品自在久久 | 无码av免费一区二区三区试看 | 久久99精品久久久久久 | 精品成人av一区二区三区 | 97精品人妻一区二区三区香蕉 | 狠狠综合久久久久综合网 | 亚洲欧洲无卡二区视頻 | 老头边吃奶边弄进去呻吟 | 国产精品美女久久久网av | 国产网红无码精品视频 | 中文字幕无码av波多野吉衣 | 人人妻人人澡人人爽欧美精品 | 亚洲国产成人a精品不卡在线 | 成人一区二区免费视频 | 国产精品久久久久7777 | 天天av天天av天天透 | 荫蒂被男人添的好舒服爽免费视频 | 黑人粗大猛烈进出高潮视频 | 亚洲无人区一区二区三区 | 少妇性俱乐部纵欲狂欢电影 | 少妇性荡欲午夜性开放视频剧场 | 丰满岳乱妇在线观看中字无码 | 亚洲综合另类小说色区 | 中文字幕精品av一区二区五区 | 少妇久久久久久人妻无码 | 丰满少妇弄高潮了www | 亚洲综合另类小说色区 | 国产手机在线αⅴ片无码观看 | 亚洲日韩一区二区三区 | 又粗又大又硬又长又爽 | 中文字幕色婷婷在线视频 | 亚洲 激情 小说 另类 欧美 | 永久免费观看美女裸体的网站 | 曰韩少妇内射免费播放 | 国产亚洲日韩欧美另类第八页 | 欧美日韩一区二区三区自拍 | 无码精品人妻一区二区三区av | 国产无套内射久久久国产 | 少妇激情av一区二区 | 中文无码精品a∨在线观看不卡 | 大肉大捧一进一出好爽视频 | 丰满少妇高潮惨叫视频 | 国产精品无码mv在线观看 | 丰满人妻一区二区三区免费视频 | 2019nv天堂香蕉在线观看 | 欧美丰满老熟妇xxxxx性 | 强伦人妻一区二区三区视频18 | 成人aaa片一区国产精品 | 久久久久久九九精品久 | 国产人妻精品一区二区三区不卡 | 亚洲最大成人网站 | 国产成人精品无码播放 | 亚洲爆乳大丰满无码专区 | 国产亚洲精品久久久ai换 | 亚洲日韩一区二区 | 久久无码中文字幕免费影院蜜桃 | 一个人看的www免费视频在线观看 | 国产热a欧美热a在线视频 | 欧美人与禽zoz0性伦交 | 丁香啪啪综合成人亚洲 | 中文字幕亚洲情99在线 | 精品夜夜澡人妻无码av蜜桃 | 成人精品视频一区二区 | 国产精品对白交换视频 | 久久99精品国产麻豆 | 中文精品久久久久人妻不卡 | 老熟妇仑乱视频一区二区 | 亚洲欧美日韩成人高清在线一区 | 沈阳熟女露脸对白视频 | а√天堂www在线天堂小说 | 荫蒂被男人添的好舒服爽免费视频 | 国产片av国语在线观看 | 中文毛片无遮挡高清免费 | 精品国产乱码久久久久乱码 | 日本va欧美va欧美va精品 | 又色又爽又黄的美女裸体网站 | 午夜理论片yy44880影院 | 国产精品内射视频免费 | 日本肉体xxxx裸交 | 国产精品无码mv在线观看 | 中文字幕中文有码在线 | 国产精品va在线观看无码 | 老熟妇乱子伦牲交视频 | 日韩欧美中文字幕在线三区 | 狂野欧美性猛交免费视频 | 人人超人人超碰超国产 | 色老头在线一区二区三区 | 亚洲精品一区三区三区在线观看 | 欧美丰满熟妇xxxx性ppx人交 | 少妇厨房愉情理9仑片视频 | 中文字幕日韩精品一区二区三区 | 婷婷六月久久综合丁香 | 麻豆蜜桃av蜜臀av色欲av | 亚洲人成网站在线播放942 | 亚洲小说图区综合在线 | 青春草在线视频免费观看 | 无码av免费一区二区三区试看 | 国产麻豆精品精东影业av网站 | 国产绳艺sm调教室论坛 | 国产激情精品一区二区三区 | 少妇高潮喷潮久久久影院 | 麻豆av传媒蜜桃天美传媒 | 秋霞成人午夜鲁丝一区二区三区 | 风流少妇按摩来高潮 | 夜精品a片一区二区三区无码白浆 | 久青草影院在线观看国产 | 超碰97人人做人人爱少妇 | 国产成人综合在线女婷五月99播放 | 亚洲精品一区国产 | 最新国产麻豆aⅴ精品无码 | 国产性生大片免费观看性 | 天天av天天av天天透 | 久久精品国产一区二区三区肥胖 | 国产精品亚洲一区二区三区喷水 | 日本一卡2卡3卡四卡精品网站 | 亚洲成a人片在线观看无码3d | 日产精品99久久久久久 | 欧美野外疯狂做受xxxx高潮 | 国产sm调教视频在线观看 | 色诱久久久久综合网ywww | 亚洲a无码综合a国产av中文 | 欧美成人午夜精品久久久 | www成人国产高清内射 | 黑人粗大猛烈进出高潮视频 | 人妻无码久久精品人妻 | 欧美乱妇无乱码大黄a片 | 动漫av网站免费观看 | 欧洲欧美人成视频在线 | 亚洲中文字幕在线观看 | 日韩人妻系列无码专区 | 久久久久久久久蜜桃 | 香港三级日本三级妇三级 | 波多野结衣乳巨码无在线观看 | 日本爽爽爽爽爽爽在线观看免 | 人妻有码中文字幕在线 | 亚洲成熟女人毛毛耸耸多 | 中文字幕无码热在线视频 | 大肉大捧一进一出好爽视频 | 最新国产乱人伦偷精品免费网站 | 国产sm调教视频在线观看 | 99精品无人区乱码1区2区3区 | 天堂久久天堂av色综合 | 午夜男女很黄的视频 | 55夜色66夜色国产精品视频 | 一本久久伊人热热精品中文字幕 | 熟妇人妻无乱码中文字幕 | 久久99久久99精品中文字幕 | 男女猛烈xx00免费视频试看 | 无码毛片视频一区二区本码 | 亚洲熟妇色xxxxx欧美老妇y | 九九综合va免费看 | 玩弄中年熟妇正在播放 | 午夜理论片yy44880影院 | 精品aⅴ一区二区三区 | 国产成人精品视频ⅴa片软件竹菊 | 成人欧美一区二区三区黑人免费 | 丰满岳乱妇在线观看中字无码 | 成熟妇人a片免费看网站 | 熟女少妇人妻中文字幕 | 亚洲国产欧美日韩精品一区二区三区 | 久久久久免费看成人影片 | 伊人久久大香线蕉av一区二区 | 男人和女人高潮免费网站 | 99精品久久毛片a片 | 国产精品国产自线拍免费软件 | 精品无码一区二区三区爱欲 | 亚洲va中文字幕无码久久不卡 | 老司机亚洲精品影院无码 | 久久99精品久久久久久 | 久久精品中文字幕一区 | 无码国产激情在线观看 | 国产高潮视频在线观看 | 国内揄拍国内精品少妇国语 | 国产又爽又猛又粗的视频a片 | 久久成人a毛片免费观看网站 | 熟女少妇人妻中文字幕 | 亚洲精品www久久久 | 天海翼激烈高潮到腰振不止 | 成人aaa片一区国产精品 | 久久天天躁狠狠躁夜夜免费观看 | 国产成人精品视频ⅴa片软件竹菊 | 男女性色大片免费网站 | 97人妻精品一区二区三区 | 中文字幕色婷婷在线视频 | 熟女俱乐部五十路六十路av | 国产精品永久免费视频 | 国产精品久久久久久久影院 | 色诱久久久久综合网ywww | 国产乱人伦av在线无码 | 日产精品高潮呻吟av久久 | 人人爽人人澡人人人妻 | 大肉大捧一进一出视频出来呀 | 国产成人无码av一区二区 | 国产欧美熟妇另类久久久 | 中文精品无码中文字幕无码专区 | 亚洲国产精品久久人人爱 | 思思久久99热只有频精品66 | 美女毛片一区二区三区四区 | 少妇无套内谢久久久久 | 丰满人妻被黑人猛烈进入 | 精品久久久久久亚洲精品 | 国精品人妻无码一区二区三区蜜柚 | 黑人大群体交免费视频 | 丰满少妇熟乱xxxxx视频 | 亚洲精品国产第一综合99久久 | 国产精品国产三级国产专播 | 最新国产乱人伦偷精品免费网站 | 国产偷国产偷精品高清尤物 | 日日碰狠狠躁久久躁蜜桃 | 性欧美牲交在线视频 | 国产香蕉97碰碰久久人人 | 秋霞成人午夜鲁丝一区二区三区 | 国产亚洲美女精品久久久2020 | 国产精品va在线观看无码 | 内射爽无广熟女亚洲 | 久久精品人人做人人综合试看 | 高潮毛片无遮挡高清免费视频 | 国产一区二区三区四区五区加勒比 | 大屁股大乳丰满人妻 | 激情亚洲一区国产精品 | 色婷婷久久一区二区三区麻豆 | 欧美兽交xxxx×视频 | 精品一二三区久久aaa片 | 97精品人妻一区二区三区香蕉 | 麻豆md0077饥渴少妇 | 永久免费观看美女裸体的网站 | 中国女人内谢69xxxxxa片 | 日本精品人妻无码免费大全 | 午夜福利一区二区三区在线观看 | 清纯唯美经典一区二区 | 精品厕所偷拍各类美女tp嘘嘘 | 国产亚洲美女精品久久久2020 | 青青久在线视频免费观看 | 国内精品九九久久久精品 | 亚洲gv猛男gv无码男同 | 综合激情五月综合激情五月激情1 | 久久午夜无码鲁丝片午夜精品 | 少妇无码吹潮 | 国产亚洲精品久久久久久久 | 精品久久久无码中文字幕 | 精品人妻中文字幕有码在线 | 久久久久久av无码免费看大片 | 中国女人内谢69xxxx | 国产电影无码午夜在线播放 | 无人区乱码一区二区三区 | 亚无码乱人伦一区二区 | 国产精品久免费的黄网站 | 玩弄人妻少妇500系列视频 | 中文字幕av伊人av无码av | 强伦人妻一区二区三区视频18 | 国产亚洲精品久久久ai换 | 久久人人爽人人爽人人片ⅴ | 特大黑人娇小亚洲女 | 给我免费的视频在线观看 | 一个人看的视频www在线 | 国产三级精品三级男人的天堂 | 天干天干啦夜天干天2017 | 国产三级久久久精品麻豆三级 | 人妻少妇精品视频专区 | 久久无码人妻影院 | 欧洲美熟女乱又伦 | 精品国产乱码久久久久乱码 | 久精品国产欧美亚洲色aⅴ大片 | 亚洲aⅴ无码成人网站国产app | 色综合久久久无码中文字幕 | 国产黄在线观看免费观看不卡 | 国产午夜手机精彩视频 | 麻豆国产丝袜白领秘书在线观看 | 扒开双腿吃奶呻吟做受视频 | 国产午夜亚洲精品不卡 | 99久久精品国产一区二区蜜芽 | 国产成人精品一区二区在线小狼 | 人妻少妇精品无码专区动漫 | 国产午夜亚洲精品不卡下载 | 精品亚洲韩国一区二区三区 | 日产国产精品亚洲系列 | 内射老妇bbwx0c0ck | 一本一道久久综合久久 | 99麻豆久久久国产精品免费 | 精品乱码久久久久久久 | 国产精品va在线播放 | 亚洲国产午夜精品理论片 | 国产九九九九九九九a片 | 亚洲中文字幕乱码av波多ji | 日本精品人妻无码免费大全 | 久久熟妇人妻午夜寂寞影院 | 中文字幕+乱码+中文字幕一区 | 四十如虎的丰满熟妇啪啪 | 一个人免费观看的www视频 | 亚洲啪av永久无码精品放毛片 | 久久综合九色综合97网 | 国产精品视频免费播放 | 色情久久久av熟女人妻网站 | 青草视频在线播放 | 无码任你躁久久久久久久 | 真人与拘做受免费视频 | 丰满诱人的人妻3 | 国产色在线 | 国产 | 国模大胆一区二区三区 | 亚洲国产精品毛片av不卡在线 | 欧美阿v高清资源不卡在线播放 | 亚洲精品国产精品乱码不卡 | 人妻无码αv中文字幕久久琪琪布 | 国产精品丝袜黑色高跟鞋 | 波多野结衣高清一区二区三区 | 特黄特色大片免费播放器图片 | 激情内射亚州一区二区三区爱妻 | 日本熟妇人妻xxxxx人hd | 97色伦图片97综合影院 | 亚洲成在人网站无码天堂 | 无遮挡国产高潮视频免费观看 | 国产精品美女久久久 | 国产一精品一av一免费 | 国产精品视频免费播放 | 中文字幕日产无线码一区 | 内射欧美老妇wbb | 成熟妇人a片免费看网站 | 少妇被粗大的猛进出69影院 | 中文字幕人成乱码熟女app | 日韩精品a片一区二区三区妖精 | 国产成人无码一二三区视频 | 国产成人一区二区三区别 | 久久久久久国产精品无码下载 | 九九在线中文字幕无码 | 人妻插b视频一区二区三区 | 亚洲精品一区二区三区在线观看 | 亚洲精品一区国产 | 久久亚洲a片com人成 | 国内精品人妻无码久久久影院蜜桃 | 人妻插b视频一区二区三区 | 女人色极品影院 | 国产精品永久免费视频 | 荫蒂添的好舒服视频囗交 | 欧美35页视频在线观看 | 免费国产黄网站在线观看 | 女人和拘做爰正片视频 | 男女下面进入的视频免费午夜 | 精品国产一区二区三区av 性色 | 99国产精品白浆在线观看免费 | 日韩精品久久久肉伦网站 | 国产成人人人97超碰超爽8 | 人妻无码久久精品人妻 | 亚洲日韩av一区二区三区中文 | 国产乱人无码伦av在线a | 久久久久久久久888 | 十八禁视频网站在线观看 | 樱花草在线播放免费中文 | 少妇厨房愉情理9仑片视频 | 日本一区二区更新不卡 | 欧美熟妇另类久久久久久不卡 | a在线观看免费网站大全 | 亚洲精品国偷拍自产在线麻豆 | 国产莉萝无码av在线播放 | 四十如虎的丰满熟妇啪啪 | 国产精品免费大片 | 国产激情无码一区二区 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲中文字幕久久无码 | 97se亚洲精品一区 | 亚洲爆乳大丰满无码专区 | 日本成熟视频免费视频 | 荫蒂添的好舒服视频囗交 | 麻豆国产人妻欲求不满谁演的 | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲精品中文字幕 | 久久久无码中文字幕久... | 国产激情无码一区二区app | 国产亚洲欧美在线专区 | 丰满妇女强制高潮18xxxx | 男人的天堂2018无码 | 国产精品久久久一区二区三区 | 国内揄拍国内精品人妻 | 四虎国产精品一区二区 | 国产一区二区三区日韩精品 | 无码播放一区二区三区 | 久久人人爽人人人人片 | 97色伦图片97综合影院 | 国产9 9在线 | 中文 | 成年美女黄网站色大免费视频 | 少妇厨房愉情理9仑片视频 | 亚洲中文无码av永久不收费 | 99久久人妻精品免费一区 | www一区二区www免费 | 女人和拘做爰正片视频 | 亚洲 另类 在线 欧美 制服 | 国产精品亚洲lv粉色 | 波多野结衣乳巨码无在线观看 | 国产午夜精品一区二区三区嫩草 | 一本色道婷婷久久欧美 | 欧美 日韩 人妻 高清 中文 | 久久久久se色偷偷亚洲精品av | 性色欲网站人妻丰满中文久久不卡 | 扒开双腿疯狂进出爽爽爽视频 | a在线亚洲男人的天堂 | 国产精品igao视频网 | 人妻少妇精品无码专区动漫 | www国产亚洲精品久久久日本 | v一区无码内射国产 | 国产婷婷色一区二区三区在线 | 99久久精品无码一区二区毛片 | 撕开奶罩揉吮奶头视频 | 欧美精品免费观看二区 | 99麻豆久久久国产精品免费 | 亚洲精品国产第一综合99久久 | 中文字幕无码av波多野吉衣 | 亚洲色偷偷男人的天堂 | 欧美老妇与禽交 | 日产精品高潮呻吟av久久 | 色一情一乱一伦一视频免费看 | 日产精品高潮呻吟av久久 | 国产av一区二区三区最新精品 | 亚洲成av人综合在线观看 | а天堂中文在线官网 | 亚洲中文字幕av在天堂 | а√资源新版在线天堂 | 久久97精品久久久久久久不卡 | 久久 国产 尿 小便 嘘嘘 | 亚洲熟妇色xxxxx亚洲 | 97久久超碰中文字幕 | 日日摸日日碰夜夜爽av | 国产福利视频一区二区 | 久久国产精品_国产精品 | 大地资源中文第3页 | 东京一本一道一二三区 | 免费乱码人妻系列无码专区 | 国产精品丝袜黑色高跟鞋 | 久久久久久久久蜜桃 | 强开小婷嫩苞又嫩又紧视频 | 国产av无码专区亚洲awww | 波多野结衣高清一区二区三区 | 亚洲精品中文字幕久久久久 | av小次郎收藏 | 成人欧美一区二区三区 | 97精品人妻一区二区三区香蕉 | 日韩av无码中文无码电影 | 欧美人妻一区二区三区 | 亚洲狠狠婷婷综合久久 | 国产三级精品三级男人的天堂 | 中文字幕无码av波多野吉衣 | 国产成人综合美国十次 | www国产精品内射老师 | 国产精品第一区揄拍无码 | 精品国产国产综合精品 | 荫蒂被男人添的好舒服爽免费视频 | 国产成人午夜福利在线播放 | 日韩人妻无码一区二区三区久久99 | 18无码粉嫩小泬无套在线观看 | 九月婷婷人人澡人人添人人爽 | 宝宝好涨水快流出来免费视频 | 无码人妻精品一区二区三区下载 | 久久精品丝袜高跟鞋 | 鲁鲁鲁爽爽爽在线视频观看 | 67194成是人免费无码 | 国产国产精品人在线视 | av无码久久久久不卡免费网站 | 一二三四社区在线中文视频 | 精品水蜜桃久久久久久久 | 好爽又高潮了毛片免费下载 | 暴力强奷在线播放无码 | 国产精华av午夜在线观看 | 影音先锋中文字幕无码 | 一本久道高清无码视频 | 99久久精品日本一区二区免费 | 精品熟女少妇av免费观看 | 国产成人精品无码播放 | 亚洲精品一区二区三区在线 | 亚洲欧美日韩国产精品一区二区 | 亚洲国产精品美女久久久久 | 国产真实伦对白全集 | 人妻熟女一区 | 粗大的内捧猛烈进出视频 | 麻豆国产人妻欲求不满 | 青青久在线视频免费观看 |