图像处理作业第7次
圖像處理作業(yè)第7次
1.請(qǐng)根據(jù)課本中Z變換的定義,證明如下結(jié)論。
-
(1)若x(n)x(n)x(n)的ZZZ變換為X(z)X(z)X(z),則(?1)nx(n)(-1)^nx(n)(?1)nx(n)的ZZZ變換為X(?z)X(-z)X(?z)
根據(jù)ZZZ變換的定義 X(z)=∑x(n)z?n,∑(?1)nx(n)z?n=∑x(n)(?z)?n=X(?z)X(z)=\sum x(n)z^{-n},\sum(-1)^nx(n)z^{-n}=\sum x(n)(-z)^{-n}=X(-z)X(z)=∑x(n)z?n,∑(?1)nx(n)z?n=∑x(n)(?z)?n=X(?z)。 -
(2)若x(n)x(n)x(n)的ZZZ變換為X(z)X(z)X(z),則x(?n)x(-n)x(?n)的ZZZ變換為X(1z)X(\frac{1}{z})X(z1?)
根據(jù)ZZZ變換的定義 X(z)=∑x(n)z?n,∑x(?n)z?n=∑x(n)z?(?n)=∑x(n)(1z)?n=X(1z)X(z)=\sum x(n)z^{-n},\sum x(-n)z^{-n}=\sum x(n)z^{-(-n)}=\sum x(n){(\frac{1}{z})}^{-n}=X(\frac{1}{z})X(z)=∑x(n)z?n,∑x(?n)z?n=∑x(n)z?(?n)=∑x(n)(z1?)?n=X(z1?)。 -
(3)若x(n)x(n)x(n)的ZZZ變換為X(z)X(z)X(z),證明:xdown(n)=x(2n)?Xdown(z)=1/2[X(z1/2)+X(?z1/2)]x_{down}(n)=x(2n) \leftrightarrow X_{down}(z)=1/2[X(z^{1/2})+X(-z^{1/2})]xdown?(n)=x(2n)?Xdown?(z)=1/2[X(z1/2)+X(?z1/2)]
根據(jù)ZZZ變換的定義可知:Xdown(z)=∑xdown(n)z?n=∑x(2n)z?n=∑1/2[x(2n)(z1/2)?2n+x(2n)(?z1/2)?2n]=∑1/2[x(2n)(z1/2)?2n+x(2n)(?z1/2)?2n]+∑1/2[x(2n?1)(z1/2)?(2n?1)+x(2n?1)(?z1/2)?(2n?1)]=1/2[X(z1/2)+X(?z1/2)]X_{down}(z)=\sum x_{down}(n)z^{-n}=\sum x(2n)z^{-n}=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]+\sum 1/2[x(2n-1)(z^{1/2})^{-(2n-1)}+x(2n-1)(-z^{1/2})^{-(2n-1)}]=1/2[X(z^{1/2})+X(-z^{1/2})]Xdown?(z)=∑xdown?(n)z?n=∑x(2n)z?n=∑1/2[x(2n)(z1/2)?2n+x(2n)(?z1/2)?2n]=∑1/2[x(2n)(z1/2)?2n+x(2n)(?z1/2)?2n]+∑1/2[x(2n?1)(z1/2)?(2n?1)+x(2n?1)(?z1/2)?(2n?1)]=1/2[X(z1/2)+X(?z1/2)]。
2.證明:
- 若G1(z)=?z?2k+1G0(?z?1)G_1(z)=-z^{-2k+1}G_0(-z^{-1})G1?(z)=?z?2k+1G0?(?z?1),證明:g1(n)=(?1)ng0(2k?1?n)g_1(n)=(-1)^ng_0(2k-1-n)g1?(n)=(?1)ng0?(2k?1?n)
?z2k+1G0(?z?1)?∑g0(n)(?z?1)?n(?z?2k+1)=∑g0(n)(?1)n+1zn?2k+1-z^{2k+1}G_0(-z^{-1}) \leftrightarrow\sum g_0(n)(-z^{-1})^{-n}(-z^{-2k+1})=\sum g_0(n)(-1)^{n+1}z^{n-2k+1}?z2k+1G0?(?z?1)?∑g0?(n)(?z?1)?n(?z?2k+1)=∑g0?(n)(?1)n+1zn?2k+1
令?t=n?2k+1-t=n-2k+1?t=n?2k+1
那么
∑g0(n)(?1)n+1zn+2k+1=∑g0(2k?1?t)(?1)2k?tz?t\sum g_0(n)(-1)^{n+1}z^{n+2k+1}=\sum g_0(2k-1-t)(-1)^{2k-t}z^{-t}∑g0?(n)(?1)n+1zn+2k+1=∑g0?(2k?1?t)(?1)2k?tz?t
將ttt換成nnn,得到:
∑(?1)ng0(2k?1?n)z?n\sum (-1)^ng_0(2k-1-n)z^{-n}∑(?1)ng0?(2k?1?n)z?n
因此g1(n)=(?1)ng0(2k?1?n)g_1(n)=(-1)^ng_0(2k-1-n)g1?(n)=(?1)ng0?(2k?1?n)
3.假設(shè)課本中給出完美重建濾波器的正交族對(duì)應(yīng)的三個(gè)濾波器間的關(guān)系式是正確的,并以此為基礎(chǔ),推導(dǎo)h0,h1h_0,h_1h0?,h1?的關(guān)系。
當(dāng)滿足如下式子時(shí):
g1(n)=(?1)ng0(2k?1?n)g_1(n)=(-1)^ng_0(2k-1-n)g1?(n)=(?1)ng0?(2k?1?n)
hi(n)=gi(2k?1?n),i={0,1}h_i(n)=g_i(2k-1-n),i=\{0,1\}hi?(n)=gi?(2k?1?n),i={0,1}
h0(n)=g0(2k?1?n)→g0(n)=h0(2k?1?n)h_0(n)=g_0(2k-1-n) \rightarrow g_0(n)=h_0(2k-1-n)h0?(n)=g0?(2k?1?n)→g0?(n)=h0?(2k?1?n)
h1(n)=g1(2k?1?n)=(?1)2k?1?ng0(2k?1?(2k?1?n))=(?1)n+1g0(n)=(?1)n+1h0(2k?1?n)h_1(n)=g_1(2k-1-n)=(-1)^{2k-1-n}g_0(2k-1-(2k-1-n))=(-1)^{n+1}g_0(n)=(-1)^{n+1}h_0(2k-1-n)h1?(n)=g1?(2k?1?n)=(?1)2k?1?ng0?(2k?1?(2k?1?n))=(?1)n+1g0?(n)=(?1)n+1h0?(2k?1?n)
是故
h1(n)=(?1)n+1h0(2k?1?n)h_1(n)=(-1)^{n+1}h_0(2k-1-n)h1?(n)=(?1)n+1h0?(2k?1?n)
4. 哈爾小波
截圖顯示:
14[111111111111111111111111?1?1?1?1?1?1?1?12222?2?2?2?200000000000000002222?2?2?2?222?2?2000000000000000022?2?2000000000000000022?2?2000000000000000022?2?222?22000000000000000022?22000000000000000022?22000000000000000022?22000000000000000022?22000000000000000022?22000000000000000022?22000000000000000022?22]\frac{1}{4} \left[ \begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\ \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2\\ 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2\\ 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2\\ \end{matrix} \right] 41???????????????????????????????112?0200022?0000000?112?02000?22?0000000?112?0?2000022?000000?112?0?20000?22?000000?11?2?002000022?00000?11?2?0020000?22?00000?11?2?00?20000022?0000?11?2?00?200000?22?0000?1?102?0020000022?000?1?102?00200000?22?000?1?102?00?200000022?00?1?102?00?2000000?22?00?1?10?2?000200000022?0?1?10?2?0002000000?22?0?1?10?2?000?2000000022??1?10?2?000?20000000?22????????????????????????????????
總結(jié)
- 上一篇: 多台主机怎么共用一个显示屏多台电脑共用一
- 下一篇: 图像处理作业4