P2260 [清华集训2012]模积和,P2834 能力测验(二维除法分块)
P2260 [清華集訓2012]模積和
推導過程
我們假定n<=mn <= mn<=m
∑i=1n∑j=1m(nmodi)(mmodj),i=?j\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} (n\mod i)(m \mod j), i \not= ji=1∑n?j=1∑m?(nmodi)(mmodj),i?=j
=∑i=1n∑j=1m(nmodi)(mmodj)?∑k=1n(nmodk)(mmodk)= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} (n\mod i)(m \mod j) - \sum_{k = 1} ^{n} (n \mod k) (m \mod k)=i=1∑n?j=1∑m?(nmodi)(mmodj)?k=1∑n?(nmodk)(mmodk)
=∑i=1n(n??ni?i)∑j=1m(m??mj?j)?∑k=1n(n??nk?k)(m??mk?k)= \sum_{i = 1} ^{n} (n - \lfloor \frac{n}{i}\rfloor i) \sum_{j = 1} ^{m} (m - \lfloor \frac{m}{j}\rfloor j) - \sum_{k = 1} ^{n} (n - \lfloor \frac{n}{k}\rfloor k) (m - \lfloor \frac{m}{k}\rfloor k)=i=1∑n?(n??in??i)j=1∑m?(m??jm??j)?k=1∑n?(n??kn??k)(m??km??k)
=(n2?∑i=1n?ni?i)(m2?∑j=1m?mj?j)?∑k=1n(nm?nk?mk??mk?nk?)+k2?nkmk?= (n ^ 2 - \sum_{i = 1} ^{n} \lfloor \frac{n}{i}\rfloor i)(m ^ 2 - \sum_{j = 1} ^{m} \lfloor \frac{m}{j}\rfloor j) - \sum_{k = 1} ^{n}(nm - nk \lfloor{\frac{m}{k}}\rfloor - mk \lfloor{\frac{n}{k}}\rfloor) + k ^ 2 \lfloor{\frac{n}{k}}\frac{m}{k}\rfloor=(n2?i=1∑n??in??i)(m2?j=1∑m??jm??j)?k=1∑n?(nm?nk?km???mk?kn??)+k2?kn?km??
之后我們可以利用整除分塊加平方和公式與逆元結合求得最后答案
1+22+32+……+n2=n(n+1)(2n+1)61 + 2 ^ 2 + 3 ^ 2 + …… + n ^ 2 = \frac{n(n + 1)(2n + 1)}{6}1+22+32+……+n2=6n(n+1)(2n+1)?
多余的化簡,只要上面的就行了,一開始我化簡成了下面的式子,以為更簡單,結果求崩了,找不出bugbugbug,,,
=(n2?∑i=1n?ni?i)(m2?∑j=1m?mj?j)?n2m+∑k=1n(nk?mk?+mk?nk?)?k2?nk??mk?= (n ^ 2 - \sum_{i = 1} ^{n} \lfloor \frac{n}{i}\rfloor i)(m ^ 2 - \sum_{j = 1} ^{m} \lfloor \frac{m}{j}\rfloor j) - n ^ 2m + \sum_{k = 1} ^{n}(nk \lfloor{\frac{m}{k}}\rfloor + mk \lfloor{\frac{n}{k}}\rfloor) - k ^ 2 \lfloor{\frac{n}{k}}\rfloor\lfloor\frac{m}{k}\rfloor=(n2?i=1∑n??in??i)(m2?j=1∑m??jm??j)?n2m+k=1∑n?(nk?km??+mk?kn??)?k2?kn???km??
=(n2?∑i=1n?ni?i)(m2?∑j=1m?mj?j)?n2m+n2∑k=1nk?mk?+nm∑k=1nk?nk?)?∑k=1nk2?nk??mk?= (n ^ 2 - \sum_{i = 1} ^{n} \lfloor \frac{n}{i}\rfloor i)(m ^ 2 - \sum_{j = 1} ^{m} \lfloor \frac{m}{j}\rfloor j) - n ^ 2m + n ^ 2\sum_{k = 1} ^{n}k \lfloor{\frac{m}{k}}\rfloor + nm\sum_{k = 1} ^{n}k \lfloor{\frac{n}{k}}\rfloor) - \sum_{k = 1} ^{n}k ^ 2 \lfloor{\frac{n}{k}}\rfloor\lfloor\frac{m}{k}\rfloor=(n2?i=1∑n??in??i)(m2?j=1∑m??jm??j)?n2m+n2k=1∑n?k?km??+nmk=1∑n?k?kn??)?k=1∑n?k2?kn???km??
代碼
注意隨手取模,容易溢出wawawa。
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll x = 0, f = 1; char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return x * f; }const int mod = 19940417, inv = 3323403;ll calc1(ll n) {return n * (n + 1) % mod * (2 * n + 1) % mod * inv % mod; }ll calc2(ll l, ll r) {return (l + r) * (r - l + 1) / 2 % mod; }ll f(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + n * (r - l + 1) % mod - calc2(l, r) * (n / l) % mod + mod) % mod;}return ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);ll n = read(), m = read();if(n > m) swap(n, m);ll ans = (f(n) * f(m)) % mod;for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ll temp1 = n * m % mod * (r - l + 1) % mod;ll temp2 = n * calc2(l, r) % mod * (m / l) % mod;ll temp3 = m * calc2(l, r) % mod * (n / l) % mod;ll temp4 = (calc1(r) - calc1(l - 1) + mod) * (n / l) % mod * (m / l) % mod;ans = (ans - (temp1 - temp2 - temp3 + temp4) % mod + mod) % mod;}cout << ans << endl;return 0; }P2834 能力測驗
照搬上面的代碼,改一下模數和逆元即可。
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll x = 0, f = 1; char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return x * f; }const int mod = 1000000007, inv = 166666668;ll calc1(ll n) {return n * (n + 1) % mod * (2 * n + 1) % mod * inv % mod; }ll calc2(ll l, ll r) {return (l + r) * (r - l + 1) / 2 % mod; }ll f(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + n * (r - l + 1) % mod - calc2(l, r) * (n / l) % mod + mod) % mod;}return ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);ll n = read(), m = read();if(n > m) swap(n, m);ll ans = (f(n) * f(m)) % mod;for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ll temp1 = n * m % mod * (r - l + 1) % mod;ll temp2 = n * calc2(l, r) % mod * (m / l) % mod;ll temp3 = m * calc2(l, r) % mod * (n / l) % mod;ll temp4 = (calc1(r) - calc1(l - 1) + mod) * (n / l) % mod * (m / l) % mod;ans = (ans - (temp1 - temp2 - temp3 + temp4) % mod + mod) % mod;}cout << ans << endl;return 0; }總結
以上是生活随笔為你收集整理的P2260 [清华集训2012]模积和,P2834 能力测验(二维除法分块)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 女生减肥每天摄入多少
- 下一篇: 胯部肉多怎么减肥