斗地主(矩阵快速幂)
地斗主
思路
看到這nnn非常大,感覺一定是個結論公式題,但是感覺又不像是排列組合,于是可以考慮矩陣快速冪了,所以關鍵就是得得到遞推公式了。
我們將棋盤分成兩部分n?num,numn - num, numn?num,num我們假定顯然對num=1,2,3,4,5num = 1, 2, 3, 4, 5num=1,2,3,4,5分別有1,4,2,3,2,31, 4, 2, 3, 2, 31,4,2,3,2,3種分法,對應到原來一整塊的部分上也就是ansn=ansn?1+4ansn?2+2ansn?3+3ansn?4……ans_n = ans_{n - 1} + 4ans_{n - 2} + 2 ans_{n - 3} + 3 ans_{n - 4}……ansn?=ansn?1?+4ansn?2?+2ansn?3?+3ansn?4?……,并且后面的變化是由2,3,2,32, 3, 2, 32,3,2,3不斷循環下去的,所以我們只要將ansn?ansn?1ans_n - ans_{n - 1}ansn??ansn?1?即可得到遞推式ansn=ansn?1+5ansn?2+ansn?3?ansn?4ans_n = ans_{n - 1} + 5ans_{n - 2} + ans_{n - 3} - ans_{n - 4}ansn?=ansn?1?+5ansn?2?+ansn?3??ansn?4?
接下來就是這么一個簡單的矩陣乘法了
[a4a3a2a1][1100501000010000]\left [ \begin{matrix} a_4 & a_3 & a_2 & a_1 \end{matrix} \right] \left [ \begin{matrix} 1 & 1 & 0 & 0\\5 & 0 & 1 & 0\\0&0&0&1\\ 0&0&0&0\end{matrix}\right] [a4??a3??a2??a1??]?????1500?1000?0100?0010??????
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }int mod, n;struct matrix {ll a[4][4];matrix operator * (matrix & t) {matrix temp;for(int i = 0; i < 4; i++) {for(int j = 0; j < 4; j++) {temp.a[i][j] = 0;for(int k = 0; k < 4; k++) {temp.a[i][j] = (temp.a[i][j] + a[i][k] * t.a[k][j]) % mod;}}}return temp;} };int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);int T = read();while(T--) {n = read(), mod = read();if(n <= 4) {if(n == 1) printf("%d\n", 1);else if(n == 2) printf("%d\n", 5);else if(n == 3) printf("%d\n", 11);else printf("%d\n", 36);continue;}matrix ans = {36, 11, 5, 1};matrix a = {1, 1, 0, 0,5, 0, 1, 0,1, 0, 0, 1,-1, 0, 0, 0};n -= 4;while(n) {if(n & 1) ans = ans * a;a = a * a;n >>= 1;}printf("%lld\n", (ans.a[0][0] % mod + mod) % mod);}return 0; }總結
以上是生活随笔為你收集整理的斗地主(矩阵快速幂)的全部內容,希望文章能夠幫你解決所遇到的問題。