「LibreOJ Round #11」Misaka Network 与求和(杜教筛 + Min_25)
#572. 「LibreOJ Round #11」Misaka Network 與求和
推式子
∑i=1n∑j=1nf(gcd(i,j))k∑d=1nf(d)k∑i=1nd∑j=1nd[gcd(i,j)=1]∑d=1nf(d)k∑K=1ndμ(k)(nKd)2t=Kd∑t=1n(nt)2∑d∣tf(d)kμ(td)我們記f(x)k=F(x)上面式子后半部分是一個迪利克雷卷積形式:F?μ所以我們卷上一個I,有F?μ?I=F??=F得到后半部分的前綴和S(n)=∑i=1nF(i)?∑i=2nS(ni)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} f(gcd(i, j)) ^ k\\ \sum_{d = 1} ^{n} f(d) ^k \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq}[gcd(i, j) = 1]\\ \sum_{d = 1} ^{n} f(d) ^k \sum_{K = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) \left( \frac{n}{Kd} \right) ^2\\ t = Kd\\ \sum_{t = 1} ^{n} \left(\frac{n}{t} \right) ^ 2 \sum_{d \mid t} f(d) ^ k \mu(\frac{t}ze8trgl8bvbq)\\ 我們記f(x) ^ k = F(x)\\ 上面式子后半部分是一個迪利克雷卷積形式:F * \mu\\ 所以我們卷上一個I,有F * \mu * I = F * \epsilon = F\\ 得到后半部分的前綴和S(n) = \sum_{i = 1} ^{n} F(i) - \sum_{i = 2} ^{n} S(\frac{n}{i})\\ i=1∑n?j=1∑n?f(gcd(i,j))kd=1∑n?f(d)ki=1∑dn??j=1∑dn??[gcd(i,j)=1]d=1∑n?f(d)kK=1∑dn??μ(k)(Kdn?)2t=Kdt=1∑n?(tn?)2d∣t∑?f(d)kμ(dt?)我們記f(x)k=F(x)上面式子后半部分是一個迪利克雷卷積形式:F?μ所以我們卷上一個I,有F?μ?I=F??=F得到后半部分的前綴和S(n)=i=1∑n?F(i)?i=2∑n?S(in?)
化簡到這里只需要跟上面一題類似用Min_25求∑i=1nF(i)\sum\limits_{i = 1} ^{n} F(i)i=1∑n?F(i),然后用杜教篩求S(n)S(n)S(n)即可得到答案。
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }#define uint unsigned intconst int N = 1e6 + 10;uint quick_pow(uint a, int n) {uint ans = 1;while(n) {if(n & 1) ans = ans * a;a = a * a;n >>= 1;}return ans; }namespace Min_25 {uint prime[N], g[N], sum[N], f[N], calc[N];int a[N], id1[N], id2[N], n, m, k, cnt, T;bool st[N];int ID(int x) {return x <= T ? id1[x] : id2[n / x];}void init() {cnt = m = 0;T = sqrt(n + 0.5);for(int i = 2; i <= T; i++) {if(!st[i]) {prime[++cnt] = i;f[cnt] = quick_pow(i, k);sum[cnt] = sum[cnt - 1] + 1;}for(int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {break;}}}for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);a[++m] = n / l;if(a[m] <= T) id1[a[m]] = m;else id2[n / a[m]] = m;g[m] = a[m] - 1;}for(int j = 1; j <= cnt; j++) {for(int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {g[i] -= g[ID(a[i] / prime[j])] - sum[j - 1];}}for(int i = 1; i <= T; i++) {st[i] = 0;}/*非遞歸版本*/// for(int j = cnt; j >= 1; j--) {// for(int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {// for(ll k = prime[j]; k * prime[j] <= a[i]; k *= prime[j]) {// calc[i] += calc[ID(a[i] / k)] + (g[ID(a[i] / k)] - sum[j - 1]) * f[j];// }// }// }}// uint solve(int x) {// if(x <= 1) return 0;// return calc[ID(x)] + g[ID(x)];// }/*下面是遞歸版本*/// uint solve(int n, int m) {// if(n < prime[m] || n <= 1) return 0;// uint ans = 0;// for(int j = m; j <= cnt && 1ll * prime[j] * prime[j] <= n; j++) {// for(ll i = prime[j]; i * prime[j] <= n; i *= prime[j]) {// ans += solve(n / i, j + 1) + (g[ID(n / i)] - sum[j - 1]) * f[j];// }// }// return ans;// }// uint solve(int n) {// if(n <= 1) return 0;// return solve(n, 1) + g[ID(n)];// } }unordered_map<int, uint> ans_s;uint S(int n) {if(ans_s.count(n)) return ans_s[n];uint ans = Min_25::solve(n);for(uint l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans -= (r - l + 1) * S(n / l);}return ans_s[n] = ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);uint n = read(), k = read();Min_25::n = n, Min_25::k = k;Min_25::init();uint ans = 0;for(uint l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans += (n / l) * (n / l) * (S(r) - S(l - 1));}cout << ans << endl;return 0; }寫法二
∑i=1n∑j=1nf(gcd(i,j))k∑d=1nf(d)k∑i=1nd∑j=1nd[gcd(i,j)==1]∑d=1nf(d)k(2∑i=1nd?(i)?1)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n}f(gcd(i, j)) ^k\\ \sum_{d = 1} ^{n} f(d) ^ k \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq}[gcd(i, j) == 1]\\ \sum_{d = 1} ^{n} f(d) ^ k(2 \sum_{i = 1} ^ {\frac{n}ze8trgl8bvbq} \phi(i) - 1)\\ i=1∑n?j=1∑n?f(gcd(i,j))kd=1∑n?f(d)ki=1∑dn??j=1∑dn??[gcd(i,j)==1]d=1∑n?f(d)k(2i=1∑dn???(i)?1)
充分利用上面遞推Min_25,得到一個復雜度更優的算法。
總結
以上是生活随笔為你收集整理的「LibreOJ Round #11」Misaka Network 与求和(杜教筛 + Min_25)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【剑指 offer】(二十二)—— 栈的
- 下一篇: vivo 45W 双口氮化镓充电器发布: