E. The Child and Binary Tree(生成函数 + 多项式)
E. The Child and Binary Tree
不難寫出一個遞推式fn=∑i=1ngi∑j=0n?ifjfn?i?jf_n = \sum\limits_{i = 1} ^{n}g_i \sum\limits_{j = 0} ^{n - i}f_jf_{n - i - j}fn?=i=1∑n?gi?j=0∑n?i?fj?fn?i?j?,其中gig_igi?表示ccc中有沒有iii這個數(shù)。
設(shè)F(x)F(x)F(x)為fff的生成函數(shù),G(x)G(x)G(x)為ggg的生成函數(shù),則有F(x)=G(x)F(x)F(x)+1F(x) = G(x)F(x)F(x) + 1F(x)=G(x)F(x)F(x)+1。
因為做卷積[x0]G[x ^ 0]G[x0]G是為000的,所以會沒有常數(shù)項,得在右邊加111。
解這個方程有F(x)=1±1?4G(x)2G(x)=21±1?4G(x)F(x) = \frac{1 \pm \sqrt{1 - 4G(x)}}{2G(x)} = \frac{2}{1 \pm \sqrt{1 - 4G(x)}}F(x)=2G(x)1±1?4G(x)??=1±1?4G(x)?2?,取x=0x = 0x=0時11±1\frac{1}{1 \pm 1}1±11?,所以負號不可取,F(x)=21+1?4G(x)F(x) = \frac{2}{1 + \sqrt{1 - 4G(x)}}F(x)=1+1?4G(x)?2?。
所以只要多項式開根,多項式求逆就可以得到答案了。
#include <bits/stdc++.h>using namespace std;const int mod = 998244353, inv2 = mod + 1 >> 1;namespace Quadratic_residue {struct Complex {int r, i;Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}};int I2;Complex operator * (const Complex &a, Complex &b) {return Complex((1ll * a.r * b.r % mod + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);}Complex quick_pow(Complex a, int n) {Complex ans = Complex(1, 0);while (n) {if (n & 1) {ans = ans * a;}a = a * a;n >>= 1;}return ans;}int get_residue(int n) {mt19937 e(233);if (n == 0) {return 0;}if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {return -1;}uniform_int_distribution<int> r(0, mod - 1);int a = r(e);while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {a = r(e);}I2 = (1ll * a * a % mod - n + mod) % mod;int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;if(x > y) swap(x, y);return x;} }const int N = 1e6 + 10;int r[N], inv[N], b[N], c[N], d[N], e[N], t[N];int quick_pow(int a, int n) {int ans = 1;while (n) {if (n & 1) {ans = 1ll * a * ans % mod;}a = 1ll * a * a % mod;n >>= 1;}return ans; }void get_r(int lim) {for (int i = 0; i < lim; i++) {r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);} }void get_inv(int n) {inv[1] = 1;for (int i = 2; i <= n; i++) {inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;} }void NTT(int *f, int lim, int rev) {for (int i = 0; i < lim; i++) {if (i < r[i]) {swap(f[i], f[r[i]]);}}for (int mid = 1; mid < lim; mid <<= 1) {int wn = quick_pow(3, (mod - 1) / (mid << 1));for (int len = mid << 1, cur = 0; cur < lim; cur += len) {int w = 1;for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;}}}if (rev == -1) {int inv = quick_pow(lim, mod - 2);reverse(f + 1, f + lim);for (int i = 0; i < lim; i++) {f[i] = 1ll * f[i] * inv % mod;}} }void polyinv(int *f, int *g, int n) {if (n == 1) {g[0] = quick_pow(f[0], mod - 2);return ;}polyinv(f, g, n + 1 >> 1);for (int i = 0; i < n; i++) {t[i] = f[i];}int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);NTT(t, lim, 1);NTT(g, lim, 1);for (int i = 0; i < lim; i++) {int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;g[i] = 1ll * g[i] * cur % mod;t[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }void polysqrt(int *f, int *g, int n) {if (n == 1) {g[0] = Quadratic_residue::get_residue(f[0]);return ;}polysqrt(f, g, n + 1 >> 1);polyinv(g, b, n);int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);for (int i = 0; i < n; i++) {t[i] = f[i];}NTT(g, lim, 1);NTT(b, lim, 1);NTT(t, lim, 1);for (int i = 0; i < lim; i++) {g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;b[i] = t[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }void derivative(int *a, int *b, int n) {for (int i = 0; i < n; i++) {b[i] = 1ll * a[i + 1] * (i + 1) % mod;} }void integrate(int *a, int n) {for (int i = n - 1; i >= 1; i--) {a[i] = 1ll * a[i - 1] * inv[i] % mod;}a[0] = 0; }void polyln(int *f, int *g, int n) {polyinv(f, b, n);derivative(f, g, n);int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);NTT(g, lim, 1);NTT(b, lim, 1);for (int i = 0; i < lim; i++) {g[i] = 1ll * g[i] * b[i] % mod;b[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;}integrate(g, n); }void polyexp(int *f, int *g, int n) {if (n == 1) {g[0] = 1;return ;}polyexp(f, g, n + 1 >> 1);int lim = 1;while (lim < 2 * n) {lim <<= 1;}polyln(g, d, n);for (int i = 0; i < n; i++) {t[i] = (f[i] - d[i] + mod) % mod;}t[0] = (t[0] + 1) % mod;get_r(lim);NTT(g, lim, 1);NTT(t, lim, 1);for (int i = 0; i < lim; i++) {g[i] = 1ll * g[i] * t[i] % mod;t[i] = d[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }/*b存放多項式逆,c存放多項式開根,d存放多項式對數(shù)ln,e存放多項式指數(shù)exp,t作為中間轉(zhuǎn)移數(shù)組,如果要用到polyinv,得提前調(diào)用get_inv(n)先預(yù)先得到我們想要得到的逆元范圍。 */int a[N], n, m;int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d %d", &n, &m);for (int i = 1, x; i <= n; i++) {scanf("%d", &x);a[x]++;}for (int i = 0; i <= 100000; i++) {a[i] = (mod - 4 * a[i]) % mod;}a[0] = 1;get_inv(200010);polysqrt(a, c, 200005);for (int i = 0; i < 200005; i++) {a[i] = c[i];c[i] = 0;}a[0] = (a[0] + 1) % mod;polyinv(a, b, 200005);for (int i = 1; i <= m; i++) {printf("%lld\n", 1ll * b[i] * 2 % mod);}return 0; }總結(jié)
以上是生活随笔為你收集整理的E. The Child and Binary Tree(生成函数 + 多项式)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 断糖减肥法不能吃什么
- 下一篇: 蜜橘的功效与作用、禁忌和食用方法