POJ 3264 Balanced Lineup(RMQ)
| Time Limit: 5000MS | ? | Memory Limit: 65536K |
| Total Submissions: 24349 | ? | Accepted: 11348 |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Line 1: Two space-separated integers, N and Q.Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2Sample Output
6 3 0Source
USACO 2007 January Silver #include<stdio.h> #include<iostream> #include<math.h> #include<string.h> using namespace std; const int MAXN=50050;int dpmax[MAXN][20]; int dpmin[MAXN][20];void makeMaxRmq(int n,int b[]) {for(int i=0;i<n;i++)dpmax[i][0]=b[i];for(int j=1;(1<<j)<=n;j++)for(int i=0;i+(1<<j)-1<n;i++)dpmax[i][j]=max(dpmax[i][j-1],dpmax[i+(1<<(j-1))][j-1]); } int getMax(int u,int v) {int k=(int)(log(v-u+1.0)/log(2.0));return max(dpmax[u][k],dpmax[v-(1<<k)+1][k]); } void makeMinRmq(int n,int b[]) {for(int i=0;i<n;i++)dpmin[i][0]=b[i];for(int j=1;(1<<j)<=n;j++)for(int i=0;i+(1<<j)-1<n;i++)dpmin[i][j]=min(dpmin[i][j-1],dpmin[i+(1<<(j-1))][j-1]); } int getMin(int u,int v) {int k=(int)(log(v-u+1.0)/log(2.0));return min(dpmin[u][k],dpmin[v-(1<<k)+1][k]); }int a[MAXN]; int main() {int n,Q;int u,v;while(scanf("%d%d",&n,&Q)!=EOF){for(int i=0;i<n;i++)scanf("%d",&a[i]);makeMaxRmq(n,a);makeMinRmq(n,a);while(Q--){scanf("%d%d",&u,&v);u--;v--;int t1=getMax(u,v);int t2=getMin(u,v);printf("%d\n",t1-t2);}}return 0; }?
總結
以上是生活随笔為你收集整理的POJ 3264 Balanced Lineup(RMQ)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【微博】评论采集
- 下一篇: Spring Security3源码分析