概率论与数理统计浙大第五版 第四章 部分习题
習題四
1.
(1)
分布列
| P(X) | 18\frac{1}{8}81? | 58\frac{5}{8}85? | 18\frac{1}{8}81? | 18\frac{1}{8}81? |
期望
E(X)=174E(X)=\frac{17}{4}E(X)=417?
(2)
分布列
| P(Y) | 115\frac{1}{15}151? | 12\frac{1}{2}21? | 215\frac{2}{15}152? | 930\frac{9}{30}309? |
E(Y)=7315E(Y)=\frac{73}{15}E(Y)=1573?
(3)
分布列
| P(X) | 16\frac{1}{6}61? | 16\frac{1}{6}61? | 16\frac{1}{6}61? | 16\frac{1}{6}61? | 16\frac{1}{6}61? | 136\frac{1}{36}361? | 136\frac{1}{36}361? | 136\frac{1}{36}361? | 136\frac{1}{36}361? | 136\frac{1}{36}361? | 136\frac{1}{36}361? |
E(X)=4912E(X)=\frac{49}{12}E(X)=1249?
11.
f(x)={14e?x4,x>0;0,x≤0;F(x)={1?14e?x4,x>0;0,x≤0;F(x≤1)=1?e?14F(x>1)=1?F(x≤1)=e?14f(x)=\left\{\begin{aligned} \frac{1}{4}e^{-\frac{x}{4}},\quad x>0;\\ 0,\quad\quad x\leq0; \end{aligned}\right. \\ F(x)=\left\{\begin{aligned} 1-\frac{1}{4}e^{-\frac{x}{4}},\quad x>0;\\ 0,\quad\quad x\leq0; \end{aligned}\right. \\ F(x\leq 1)=1-e^{-\frac{1}{4}} \\ F(x> 1)= 1-F(x\leq 1)=e^{-\frac{1}{4}} f(x)=????41?e?4x?,x>0;0,x≤0;?F(x)=????1?41?e?4x?,x>0;0,x≤0;?F(x≤1)=1?e?41?F(x>1)=1?F(x≤1)=e?41?
| P(X) | 1?e?141-e^{-\frac{1}{4}}1?e?41? | e?14e^{-\frac{1}{4}}e?41? |
E(X)=100?e?14?200?(1?e?14)=300?e?14?200=33.64E(X)=100*e^{-\frac{1}{4}}-200*(1-e^{-\frac{1}{4}})=300*e^{-\frac{1}{4}}-200=33.64E(X)=100?e?41??200?(1?e?41?)=300?e?41??200=33.64
23.
(1)
E(X1+X2+X3+X4+X5)=E(X1)+E(X2)+E(X3)+E(X4)+E(X5)=200+240+180+260+320=1200D(X1+X2+X3+X4+X5)=D(X1)+D(X2)+D(X3)+D(X4)+D(X5)=225+240+225+265+270=1225=352E(X_1+X_2+X_3+X_4+X_5)=E(X_1)+E(X_2)+E(X_3)+E(X_4)+E(X_5)=200+240+180+260+320=1200\\\\\\ D(X_1+X_2+X_3+X_4+X_5)=D(X_1)+D(X_2)+D(X_3)+D(X_4)+D(X_5)=225+240+225+265+270=1225=35^2 E(X1?+X2?+X3?+X4?+X5?)=E(X1?)+E(X2?)+E(X3?)+E(X4?)+E(X5?)=200+240+180+260+320=1200D(X1?+X2?+X3?+X4?+X5?)=D(X1?)+D(X2?)+D(X3?)+D(X4?)+D(X5?)=225+240+225+265+270=1225=352
(2)
(X1+X2+X3+X4+X5)~N(1200,35)(X_1+X_2+X_3+X_4+X_5)\sim N(1200,35)(X1?+X2?+X3?+X4?+X5?)~N(1200,35)
P(X1+X2+X3+X4+X5≤n)>0.99?P(Y≤n)=P(Y?120035≤n?120035)=?(n?120035)>0.99?n=1282P(X_1+X_2+X_3+X_4+X_5\leq n)>0.99 \Rightarrow P(Y\leq n)=P(\frac{Y-1200}{35}\leq\frac{n-1200}{35})=\phi(\frac{n-1200}{35})>0.99 \Rightarrow n=1282P(X1?+X2?+X3?+X4?+X5?≤n)>0.99?P(Y≤n)=P(35Y?1200?≤35n?1200?)=?(35n?1200?)>0.99?n=1282
即至少存儲1282千克該產品。
36.
由題意已知μ=7300,σ2=700\mu=7300,\sigma^2=700μ=7300,σ2=700
P(∣X?μ∣<ε)=1?P(∣X?μ∣≥ε)=1?P(μ?ε≤X≤μ+ε)=1?σ2ε2=1?70021002=89P(|X-\mu|<\varepsilon)=1-P(|X-\mu|\geq\varepsilon)=1-P(\mu-\varepsilon\leq X\leq\mu+\varepsilon)=1-\frac{\sigma^2}{\varepsilon^2}=1-\frac{700}{2100^2}=\frac{8}{9}P(∣X?μ∣<ε)=1?P(∣X?μ∣≥ε)=1?P(μ?ε≤X≤μ+ε)=1?ε2σ2?=1?21002700?=98?
總結
以上是生活随笔為你收集整理的概率论与数理统计浙大第五版 第四章 部分习题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 安徽省计算机水平考试试卷,第1次安徽省计
- 下一篇: html5 接收蓝牙广播_蓝牙定位技术浅