复杂的拉普拉斯逆变换
Laplace Inverse Transformation (LIT)
L(1πte?a2/4t)=e?ass,a>0\mathcal{L}(\frac{1}{\sqrt{\pi t}}\text{e}^{-a^2/4t})=\frac{\text{e}^{-a\sqrt{s}}}{\sqrt{s}},~~ a>0L(πt?1?e?a2/4t)=s?e?as??,??a>0
k?s?1/2e?2sk\cdot s^{-1/2} e^{-2\sqrt{s}}k?s?1/2e?2s?
where
The difficulty with this ILT is that there is a branch point singularity at s=0 that a Bromwich contour must avoid. That is, we are tasked with evaluating
∮Cds s?1/2e?2sest\oint_C ds \: s^{-1/2} e^{-2 \sqrt{s}} e^{s t}∮C?dss?1/2e?2s?est
where C is the following contour
We will define Argz∈(?π,π], so the branch is the negative real axis. There are 6 pieces to this contour, Ck, k∈{1,2,3,4,5,6}, as follows.
C1 is the contour along the line z∈[c?iR,c+iR] for some large value of R.
C2 is the contour along a circular arc of radius R from the top of C1 to just above the negative real axis.
C3 is the contour along a line just above the negative real axis between [?R,??] for some small ?.
C4 is the contour along a circular arc of radius ? about the origin.
C5 is the contour along a line just below the negative real axis between [??,?R].
C6 is the contour along the circular arc of radius R from just below the negative real axis to the bottom of C1.
We will show that the integral along C2,C4, and C6 vanish in the limits of R→∞ and ?→0.
On C2, the real part of the argument of the exponential is
Rtcos?θ?2Rcos?θ2R t \cos{\theta} - 2 \sqrt{R} \cos{\frac{\theta}{2}}Rtcosθ?2R?cos2θ?
where θ∈[π/2,π). Clearly, cosθ<0 and cosθ2>0, so that the integrand exponentially decays as R→∞ and therefore the integral vanishes along C2.
On C6, we have the same thing, but now θ∈(?π,?π/2]. This means that, due to the evenness of cosine, the integrand exponentially decays again as R→∞ and therefore the integral also vanishes along C6.
On C4, the integral vanishes in the limit as ?→0. Thus, we are left with the following by Cauchy’s integral theorem (i.e., no poles inside C):
[∫C1+∫C3+∫C5]ds s?1/2e?sest=0\left [ \int_{C_1} + \int_{C_3} + \int_{C_5}\right] ds \: s^{-1/2} e^{-\sqrt{s}} e^{s t} = 0[∫C1??+∫C3??+∫C5??]dss?1/2e?s?est=0
On C3, we parametrize by s=eiπxs=e^{iπx}s=eiπx and the integral along C3 becomes
∫C3ds s?1/2e?2sest=?ieiπ∫∞0dx x?1/2e?i2xe?xt\int_{C_3} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = -i e^{i \pi} \int_{\infty}^0 dx \:x^{-1/2} e^{-i 2\sqrt{x}} e^{-x t}∫C3??dss?1/2e?2s?est=?ieiπ∫∞0?dxx?1/2e?i2x?e?xt
On C5, however, we parametrize by s=e?iπxs=e^{?iπx}s=e?iπx and the integral along C5 becomes
∫C5ds s?1/2e?2sest=ie?iπ∫0∞dx x?1/2ei2xe?xt\int_{C_5} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = i e^{-i \pi} \int_0^{\infty} dx \: x ^{-1/2} e^{i 2 \sqrt{x}} e^{-x t}∫C5??dss?1/2e?2s?est=ie?iπ∫0∞?dxx?1/2ei2x?e?xt
We may now write
1i2π∫c?i∞c+i∞ds s?1/2e?2sest=1π∫0∞dx x?1/2cos?(2x) e?xt\frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = \frac{1}{\pi} \int_0^{\infty} dx \: x^{-1/2} \cos{(2 \sqrt{x})}\, e^{-x t}\\ i2π1?∫c?i∞c+i∞?dss?1/2e?2s?est=π1?∫0∞?dxx?1/2cos(2x?)e?xt
=1π∫?∞∞du cos?(2u) e?tu2?x=u2= \frac{1}{\pi} \underbrace{\int_{-\infty}^{\infty} du \: \cos{(2 u)} \, e^{-t u^2}}_{x=u^2} \\ =π1?x=u2∫?∞∞?ducos(2u)e?tu2??
=1π?[∫?∞∞du e?tu2ei2u]= \frac{1}{\pi} \Re{\left [\int_{-\infty}^{\infty} du \: e^{-t u^2} e^{i 2 u} \right ]} \\ =π1??[∫?∞∞?due?tu2ei2u]
=e?1/tπ?[∫?∞∞du e?t(u?i/t)2]= \frac{e^{-1/t}}{\pi} \Re{\left [\int_{-\infty}^{\infty} du \: e^{-t (u-i/t)^2} \right ]}\\ =πe?1/t??[∫?∞∞?due?t(u?i/t)2]
=e?1/tππt= \frac{e^{-1/t}}{\pi} \sqrt{\frac{\pi}{t}} =πe?1/t?tπ??
Therefore the ILT is
1i2π∫c?i∞c+i∞ds s?1/2e?2sest=(πt)?1/2e?1/t\frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = (\pi t)^{-1/2} e^{-1/t}i2π1?∫c?i∞c+i∞?dss?1/2e?2s?est=(πt)?1/2e?1/t
總結
以上是生活随笔為你收集整理的复杂的拉普拉斯逆变换的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 面向对象--内置方法
- 下一篇: 使用with 创建视图