数学建模常用算法—模糊综合评价法(FCE)
解決問題
模糊綜合評價法是在模糊環(huán)境下,考慮了多因素的影響,為了某種目的對一事物作出綜合決策的方法。
優(yōu)點(diǎn)
模糊綜合評價法具有結(jié)果清晰,系統(tǒng)性強(qiáng)的特點(diǎn),能較好地解決模糊的、難以量化的問題,適合各種非確定性問題的解決。
缺點(diǎn)
- 計(jì)算復(fù)雜,對指標(biāo)權(quán)重矢量的確定主觀性較強(qiáng)。
- 當(dāng)指標(biāo)集U較大,即指標(biāo)集個數(shù)凡較大時,在權(quán)矢量和為1的條件約束下,相對隸屬度權(quán)系數(shù)往往偏小,權(quán)矢量與模糊矩陣R不匹配,結(jié)果會出現(xiàn)超模糊現(xiàn)象,分辨率很差,無法區(qū)分誰的隸屬度更高,甚至造成評判失敗,此時可用分層模糊評估法加以改進(jìn)。
一般步驟
以企業(yè)員工考核為例
1. 建立綜合評價的因素集
因素集是以影響評價對象的各種因素為元素所組成的一個普通集合,通常用U表示,U = {u1u\mathop{{}}\nolimits_{{1}}u1? , u2u\mathop{{}}\nolimits_{{2}}u2? , ··· , unu\mathop{{}}\nolimits_{{n}}un?},其中元素 uiu\mathop{{}}\nolimits_{{i}}ui? 代表影響評價對象的第 i 個因素。這些因素,通常都具有不同程度的模糊性。
對員工的表現(xiàn),需要從多個方面進(jìn)行綜合評判,如員工的工作業(yè)績、工作態(tài)度、溝通能力、政治表現(xiàn)等。所有這些因素構(gòu)成了評價指標(biāo)體系集合,即因素集,記為:U = {政治表現(xiàn)u1u\mathop{{}}\nolimits_{{1}}u1?,工作能力u2u\mathop{{}}\nolimits_{{2}}u2?,工作態(tài)度u3u\mathop{{}}\nolimits_{{3}}u3?,工作成績u4u\mathop{{}}\nolimits_{{4}}u4?}。
2. 建立綜合評價的評價集
評價集是評價者對評價對象可能做出的各種結(jié)果所組成的集合,通常用V表示, V = {v1v\mathop{{}}\nolimits_{{1}}v1? , v2v\mathop{{}}\nolimits_{{2}}v2? , ··· , vmv\mathop{{}}\nolimits_{{m}}vm?},其中元素vjv\mathop{{}}\nolimits_{{j}}vj?代表第 j 種評價結(jié)果,可以根據(jù)實(shí)際情況的需要,用不同的等級、評語或數(shù)字來表示。
對企業(yè)員工的評價有好、良好、中等、較差、很差等。由各種不同決斷構(gòu)成的集合稱為評語集,記為:V = {優(yōu)秀v1v\mathop{{}}\nolimits_{{1}}v1?,良好v2v\mathop{{}}\nolimits_{{2}}v2?,中等v3v\mathop{{}}\nolimits_{{3}}v3?,較差v4v\mathop{{}}\nolimits_{{4}}v4?,很差v5v\mathop{{}}\nolimits_{{5}}v5?}。
3. 確定各因素的權(quán)重
評價工作中,各因素的重要程度有所不同,為此,給各因素 uiu\mathop{{}}\nolimits_{{i}}ui? 一個權(quán)重 a1a\mathop{{}}\nolimits_{{1}}a1? ,各因素的權(quán)重集合的模糊集,用A表示:A = {a1a\mathop{{}}\nolimits_{{1}}a1? , a2a\mathop{{}}\nolimits_{{2}}a2? , ··· , ana\mathop{{}}\nolimits_{{n}}an?}。
在沒有數(shù)據(jù)時,我們可以通過層次分析法確定權(quán)重;在有數(shù)據(jù)時,我們可以通過熵權(quán)法確定權(quán)重。在案例中,我們確定各因素的權(quán)重為:A = {0.25,0.2,0.25,0.3}。
4. 進(jìn)行單因素模糊評價,獲得評價矩陣
若因素集U中第 i 個元素對評價集V中第1個元素的隸屬度為 ri1r\mathop{{}}\nolimits_{{i1}}ri1? ,則對第 i 個元素單因素評價的結(jié)果用模糊集合表示為:RiR\mathop{{}}\nolimits_{{i}}Ri? = {ri1r\mathop{{}}\nolimits_{{i1}}ri1? , ri2r\mathop{{}}\nolimits_{{i2}}ri2? , ··· , rimr\mathop{{}}\nolimits_{{im}}rim?},以 m 個單因素評價集 R1R\mathop{{}}\nolimits_{{1}}R1?,R2R\mathop{{}}\nolimits_{{2}}R2?,···,RnR\mathop{{}}\nolimits_{{n}}Rn? 為行組成矩陣Rn?mR\mathop{{}}\nolimits_{{n*m}}Rn?m?,稱為模糊綜合評價矩陣。
——————————————————————————————————
★ 隸屬函數(shù)的三種確定方法
模糊統(tǒng)計(jì)法 (數(shù)模比賽中很少用,要設(shè)計(jì)發(fā)放問卷,可能來不及,但實(shí)際做研究用的較多)
原理 : 找多個人去對同個模糊概念進(jìn)行描述,用隸屬頻率去定義隸屬度 。
借助已有的客觀尺度 (需要有合適的指標(biāo),并能收集到數(shù)據(jù))
指派法 (根據(jù)問題的性質(zhì)直接套?某些分布 作為?屬函數(shù),主觀性較強(qiáng))
——————————————————————————————————
在本案例中,通過專家評審打分,我們得到以下評價矩陣:
5. 建立綜合評價模型
確定單因素評判矩陣R和因素權(quán)向量A之后,通過模糊變化將U上的模糊向量A變?yōu)閂上的模糊向量B,即 B = A1nA\mathop{{}}\nolimits_{{1n}}A1n? * RnmR\mathop{{}}\nolimits_{{nm}}Rnm? = {b1b\mathop{{}}\nolimits_{{1}}b1?,b2b\mathop{{}}\nolimits_{{2}}b2?,···,bmb\mathop{{}}\nolimits_{{m}}bm?}。
在本例中
6. 確定系統(tǒng)總得分
綜合評價模型確定后,確定系統(tǒng)得分,即 F = B1?mB\mathop{{}}\nolimits_{{1*m}}B1?m? * S1?mTS\mathop{{}}\nolimits_{{1*m}}^{{T}}S1?mT? ,其中F為系統(tǒng)總得分,S 為V 中相應(yīng)因素的級分。
在本例中,我們設(shè)置優(yōu)秀、良好、一般、較差、很差的得分分別為100、75、50、25、0,則我們得到S = {100,75,50,25,0},則該員工最后的系統(tǒng)總得分為71.5。
其他案例
1. 一級模糊綜合評價模型實(shí)例(一)
2. 一級模糊綜合評價模型實(shí)例(二)
3. 二級模糊綜合評價模型實(shí)例
4. 三級模糊綜合評價模型實(shí)例
代碼
此模型計(jì)算過程較簡單,沒有相應(yīng)代碼,只需按照步驟一步步完成即可,矩陣的乘法可以用MATLAB實(shí)現(xiàn)。
總結(jié)
以上是生活随笔為你收集整理的数学建模常用算法—模糊综合评价法(FCE)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Mariadb 二进制半自动安装脚本
- 下一篇: adb工具的下载及配置