基于R语言地理探测器包(GD)空间异质性与驱动力分析
生活随笔
收集整理的這篇文章主要介紹了
基于R语言地理探测器包(GD)空间异质性与驱动力分析
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
導入要分析的數(shù)據(jù),并用切片器選擇因變量和自變量,因變量在左側(cè),并刪除無關(guān)數(shù)據(jù),包括索引。
testdata <- read.csv(csvfile, header = TRUE, sep = ",") testdata=testdata[3:9]輸入可供選擇的分類方法
#3 approaches to calculate disgress.discmethod <- c("equal","natural","quantile")輸入可供選擇的分類基本數(shù)量
#classify 4~6 discitv <- c(4:6)篩選連續(xù)的自變量
#continuous variablescontinuous_variable <- colnames(testdata)[-1]運行g(shù)dm函數(shù)?
#gdm functiontestgdm <- gdm(WSI ~ .,continuous_variable = continuous_variable ,data = testdata,discmethod = discmethod, discitv = discitv)分析結(jié)果
?完整代碼
Sys.setlocale(category = 'LC_CTYPE', locale = 'C')#This is for using in pycharm. library(GD)filepath <- "E:/BaiduNetdiskDownload/Driving/Yl_naturalBreaks/" setwd(filepath)#Change the workspace temp=list.files(path=filepath,pattern="*.csv")#list csvfilenames in workspace for( csvfile in temp){print(csvfile)testdata <- read.csv(csvfile, header = TRUE, sep = ",")#load datatestdata <- read.csv("2003.csv", header = TRUE, sep = ",")testdata=testdata[3:9]#5 approach to calculate disgress.discmethod <- c("equal","natural","quantile")#select the best one among automatically 3 approaches of discrizetion #classify 4~6 automaticallydiscitv <- c(4:6)#continuous independent variables' name listcontinuous_variable <- colnames(testdata)[-1] #[-1] is for unselect dependent variable #gdm functiontestgdm <- gdm(WSI ~ .,continuous_variable = continuous_variable ,data = testdata,discmethod = discmethod, discitv = discitv)#dependent variable is WSI}print(testgdm)}?
總結(jié)
以上是生活随笔為你收集整理的基于R语言地理探测器包(GD)空间异质性与驱动力分析的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 三十分钟学会SED
- 下一篇: matlab win10 gpu加速,w