pandas.DataFrame.iterrows
生活随笔
收集整理的這篇文章主要介紹了
pandas.DataFrame.iterrows
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
iterrows
DataFrame.iterrows()[source]
Iterate over DataFrame rows as (index, Series) pairs. 迭代(iterate)覆蓋整個DataFrame的行中,返回(index, Series)對 >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64pandas怎樣對數據進行遍歷
import numpy as np import pandas as pddef _map(data, exp): for index, row in data.iterrows(): # 獲取每行的index、rowfor col_name in data.columns:row[col_name] = exp(row[col_name]) # 把結果返回給datareturn datadef _1map(data, exp):_data = [[exp(row[col_name]) # 把結果轉換成2級listfor col_name in data.columns]for index, row in data.iterrows()]return _dataif __name__ == "__main__":inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]df = pd.DataFrame(inp)temp = _map(df, lambda ele: ele+1 )print temp_temp = _1map(df, lambda ele: ele+1)res_data = pd.DataFrame(_temp) # 對2級list轉換成DataFrameprint res_data
參考文獻
pandas怎樣對數據進行遍歷
總結
以上是生活随笔為你收集整理的pandas.DataFrame.iterrows的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 信用卡额度共享可以分开吗?额度共享怎么还
- 下一篇: 正规POS机品牌有哪些?三招教你辨别正规