tensorflow:Multiple GPUs
深度學習theano/tensorflow多顯卡多人使用問題集
tensorflow中使用指定的GPU及GPU顯存
Using GPUs
petewarden/tensorflow_makefile
tf_gpu_manager/manager.py
多GPU運行Deep Learning 和 并行Deep Learning(待續)
Multiple GPUs
1. 終端執行程序時設置使用的GPU
如果電腦有多個GPU,tensorflow默認全部使用。如果想只使用部分GPU,可以設置CUDA_VISIBLE_DEVICES。在調用python程序時,可以使用
CUDA_VISIBLE_DEVICES=1 python my_script.py #只使用GPU1 CUDA_VISIBLE_DEVICES=0,1 python my_script.py #使用GPU0,GPU1 Environment Variable Syntax ResultsCUDA_VISIBLE_DEVICES=1 Only device 1 will be seen CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked CUDA_VISIBLE_DEVICES="" No GPU will be visible2. python代碼中設置使用的GPU
如果要在python代碼中設置使用的GPU,可以使用下面的代碼
import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"3. 設置tensorflow使用的顯存大小
定量設置顯存
默認tensorflow是使用GPU盡可能多的顯存。可以通過下面的方式,來設置使用的GPU顯存:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))上面分配給tensorflow的GPU顯存大小為:GPU實際顯存*0.7。
可以按照需要,設置不同的值,來分配顯存。
按需設置顯存
上面的只能設置固定的大小。如果想按需分配,可以使用allow_growth參數(參考網址:http://blog.csdn.net/cq361106306/article/details/52950081):
gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))4. 使用多個 GPU
如果你想讓 TensorFlow 在多個 GPU 上運行, 你可以建立 multi-tower 結構, 在這個結構 里每個 tower 分別被指配給不同的 GPU 運行. 比如:
# 新建一個 graph. c = [] for d in ['/gpu:2', '/gpu:3']:with tf.device(d):a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])c.append(tf.matmul(a, b)) with tf.device('/cpu:0'):sum = tf.add_n(c) # 新建session with log_device_placement并設置為True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # 運行這個op. print sess.run(sum)你會看到如下輸出:
Device mapping: /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K20m, pci bus id: 0000:02:00.0 /job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: Tesla K20m, pci bus id: 0000:03:00.0 /job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: Tesla K20m, pci bus id: 0000:83:00.0 /job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: Tesla K20m, pci bus id: 0000:84:00.0 Const_3: /job:localhost/replica:0/task:0/gpu:3 Const_2: /job:localhost/replica:0/task:0/gpu:3 MatMul_1: /job:localhost/replica:0/task:0/gpu:3 Const_1: /job:localhost/replica:0/task:0/gpu:2 Const: /job:localhost/replica:0/task:0/gpu:2 MatMul: /job:localhost/replica:0/task:0/gpu:2 AddN: /job:localhost/replica:0/task:0/cpu:0 [[ 44. 56.][ 98. 128.]]5. 如何實現multi_gpu_model函數
def multi_gpu_model(num_gpus=1):grads = []for i in range(num_gpus):with tf.device("/gpu:%d"%i):with tf.name_scope("tower_%d"%i):model = Model(is_training, config, scope)# 放到collection中,方便feed的時候取tf.add_to_collection("train_model", model)grads.append(model.grad) #grad 是通過tf.gradients(loss, vars)求得#以下這些add_to_collection可以直接在模型內部完成。# 將loss放到 collection中, 方便以后操作tf.add_to_collection("loss",model.loss)#將predict放到collection中,方便操作tf.add_to_collection("predict", model.predict)#將 summary.merge op放到collection中,方便操作tf.add_to_collection("merge_summary", model.merge_summary)# ...with tf.device("cpu:0"):averaged_gradients = average_gradients(grads)# average_gradients后面說明opt = tf.train.GradientDescentOptimizer(learning_rate)train_op=opt.apply_gradients(zip(average_gradients,tf.trainable_variables()))return train_op
6. cifar10 tutorial-cifar10_multi_gpu_train.py
code 見 models/tutorials/image/cifar10/
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================="""A binary to train CIFAR-10 using multiple GPUs with synchronous updates. Accuracy: cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256 epochs of data) as judged by cifar10_eval.py. Speed: With batch_size 128. System | Step Time (sec/batch) | Accuracy -------------------------------------------------------------------- 1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours) 1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours) 2 Tesla K20m | 0.13-0.20 | ~84% at 30K steps (2.5 hours) 3 Tesla K20m | 0.13-0.18 | ~84% at 30K steps 4 Tesla K20m | ~0.10 | ~84% at 30K steps Usage: Please see the tutorial and website for how to download the CIFAR-10 data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_functionfrom datetime import datetime import os.path import re import timeimport numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import cifar10FLAGS = tf.app.flags.FLAGStf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',"""Directory where to write event logs """"""and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 1000000,"""Number of batches to run.""") tf.app.flags.DEFINE_integer('num_gpus', 1,"""How many GPUs to use.""") tf.app.flags.DEFINE_boolean('log_device_placement', False,"""Whether to log device placement.""")def tower_loss(scope, images, labels):"""Calculate the total loss on a single tower running the CIFAR model.Args:scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'images: Images. 4D tensor of shape [batch_size, height, width, 3].labels: Labels. 1D tensor of shape [batch_size].Returns:Tensor of shape [] containing the total loss for a batch of data"""# Build inference Graph.logits = cifar10.inference(images)# Build the portion of the Graph calculating the losses. Note that we will# assemble the total_loss using a custom function below._ = cifar10.loss(logits, labels)# Assemble all of the losses for the current tower only.losses = tf.get_collection('losses', scope)# Calculate the total loss for the current tower.total_loss = tf.add_n(losses, name='total_loss')# Attach a scalar summary to all individual losses and the total loss; do the# same for the averaged version of the losses.for l in losses + [total_loss]:# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training# session. This helps the clarity of presentation on tensorboard.loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)tf.summary.scalar(loss_name, l)return total_lossdef average_gradients(tower_grads):"""Calculate the average gradient for each shared variable across all towers.Note that this function provides a synchronization point across all towers.Args:tower_grads: List of lists of (gradient, variable) tuples. The outer listis over individual gradients. The inner list is over the gradientcalculation for each tower.Returns:List of pairs of (gradient, variable) where the gradient has been averagedacross all towers."""average_grads = []for grad_and_vars in zip(*tower_grads):# Note that each grad_and_vars looks like the following:# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))grads = []for g, _ in grad_and_vars:# Add 0 dimension to the gradients to represent the tower.expanded_g = tf.expand_dims(g, 0)# Append on a 'tower' dimension which we will average over below.grads.append(expanded_g)# Average over the 'tower' dimension.grad = tf.concat(axis=0, values=grads)grad = tf.reduce_mean(grad, 0)# Keep in mind that the Variables are redundant because they are shared# across towers. So .. we will just return the first tower's pointer to# the Variable.v = grad_and_vars[0][1]grad_and_var = (grad, v)average_grads.append(grad_and_var)return average_gradsdef train():"""Train CIFAR-10 for a number of steps."""with tf.Graph().as_default(), tf.device('/cpu:0'):# Create a variable to count the number of train() calls. This equals the# number of batches processed * FLAGS.num_gpus.global_step = tf.get_variable('global_step', [],initializer=tf.constant_initializer(0), trainable=False)# Calculate the learning rate schedule.num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /FLAGS.batch_size)decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)# Decay the learning rate exponentially based on the number of steps.lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,global_step,decay_steps,cifar10.LEARNING_RATE_DECAY_FACTOR,staircase=True)# Create an optimizer that performs gradient descent.opt = tf.train.GradientDescentOptimizer(lr)# Get images and labels for CIFAR-10.images, labels = cifar10.distorted_inputs()batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue([images, labels], capacity=2 * FLAGS.num_gpus)# Calculate the gradients for each model tower.tower_grads = []with tf.variable_scope(tf.get_variable_scope()):for i in xrange(FLAGS.num_gpus):with tf.device('/gpu:%d' % i):with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:# Dequeues one batch for the GPUimage_batch, label_batch = batch_queue.dequeue()# Calculate the loss for one tower of the CIFAR model. This function# constructs the entire CIFAR model but shares the variables across# all towers.loss = tower_loss(scope, image_batch, label_batch)# Reuse variables for the next tower.tf.get_variable_scope().reuse_variables()# Retain the summaries from the final tower.summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)# Calculate the gradients for the batch of data on this CIFAR tower.grads = opt.compute_gradients(loss)# Keep track of the gradients across all towers.tower_grads.append(grads)# We must calculate the mean of each gradient. Note that this is the# synchronization point across all towers.grads = average_gradients(tower_grads)# Add a summary to track the learning rate.summaries.append(tf.summary.scalar('learning_rate', lr))# Add histograms for gradients.for grad, var in grads:if grad is not None:summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))# Apply the gradients to adjust the shared variables.apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)# Add histograms for trainable variables.for var in tf.trainable_variables():summaries.append(tf.summary.histogram(var.op.name, var))# Track the moving averages of all trainable variables.variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY, global_step)variables_averages_op = variable_averages.apply(tf.trainable_variables())# Group all updates to into a single train op.train_op = tf.group(apply_gradient_op, variables_averages_op)# Create a saver.saver = tf.train.Saver(tf.global_variables())# Build the summary operation from the last tower summaries.summary_op = tf.summary.merge(summaries)# Build an initialization operation to run below.init = tf.global_variables_initializer()# Start running operations on the Graph. allow_soft_placement must be set to# True to build towers on GPU, as some of the ops do not have GPU# implementations.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=FLAGS.log_device_placement))sess.run(init)# Start the queue runners.tf.train.start_queue_runners(sess=sess)summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)for step in xrange(FLAGS.max_steps):start_time = time.time()_, loss_value = sess.run([train_op, loss])duration = time.time() - start_timeassert not np.isnan(loss_value), 'Model diverged with loss = NaN'if step % 10 == 0:num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpusexamples_per_sec = num_examples_per_step / durationsec_per_batch = duration / FLAGS.num_gpusformat_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ''sec/batch)')print (format_str % (datetime.now(), step, loss_value,examples_per_sec, sec_per_batch))if step % 100 == 0:summary_str = sess.run(summary_op)summary_writer.add_summary(summary_str, step)# Save the model checkpoint periodically.if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)def main(argv=None): # pylint: disable=unused-argumentcifar10.maybe_download_and_extract()if tf.gfile.Exists(FLAGS.train_dir):tf.gfile.DeleteRecursively(FLAGS.train_dir)tf.gfile.MakeDirs(FLAGS.train_dir)train()if __name__ == '__main__': tf.app.run() python cifar10_multi_gpu_train.py --num_gpus=2參考文獻
http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow
http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter
(原)tensorflow中使用指定的GPU及GPU顯存
Using GPUs
TensorFlow官方文檔中文版 ? 運作方式 ? 使用gpu
tensorflow學習筆記(三十一):構建多GPU代碼
cifar10 tutorial
CIFAR10 多 GPU 版本例程源碼分析
tensorflow cifar_10 代碼閱讀與理解
總結
以上是生活随笔為你收集整理的tensorflow:Multiple GPUs的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 申请中银京东联名卡要哪些条件?如何申请?
- 下一篇: 支付宝绑定信用卡可以转账吗?有效期怎么填