Java基础——深入理解ReentrantLock
一、簡介
? ? ? ?在Java中通常實現鎖有兩種方式,一種是synchronized關鍵字,另一種是Lock。二者其實并沒有什么必然聯系,但是各有各的特點,在使用中可以進行取舍的使用。
二、ReentrantLock與synchronized的比較
相同點:
(1)ReentrantLock提供了synchronized類似的功能和內存語義。
不同點:
? ? (1)ReentrantLock功能性方面更全面,比如定時等候鎖、可中斷鎖等候、鎖投票等,因此更有擴展性。在多個條件變量和高度競爭鎖的地方,用ReentrantLock更合適,ReentrantLock還提供了Condition,對線程的等待和喚醒等操作更加靈活,一個ReentrantLock可以有多個Condition實例,所以更有擴展性。
? ? (2)ReentrantLock 的性能比synchronized會好點。
? ? (3)ReentrantLock提供了可輪詢的鎖請求,他可以嘗試的去取得鎖,如果取得成功則繼續處理,取得不成功,可以等下次運行的時候處理,所以不容易產生死鎖,而synchronized則一旦進入鎖請求要么成功,要么一直阻塞,所以更容易產生死鎖。
? ? (4)對于使用者的直觀體驗上Lock是比較復雜的,需要lock和realse,通常需要在finally中進行鎖的釋放,否則,如果受保護的代碼將拋出異常,就會產生死鎖的問題,這一點區別看起來可能沒什么,但是實際上,它極為重要。但是synchronized的使用十分簡單,只需要對自己的方法或者關注的同步對象或類使用synchronized關鍵字即可,JVM 將確保鎖會獲得自動釋放。但是對于鎖的粒度控制比較粗,同時對于實現一些鎖的狀態的轉移比較困難。
? ? (5) 當 JVM 用 synchronized 管理鎖定請求和釋放時,JVM 在生成線程轉儲時能夠包括鎖定信息。這些對調試非常有價值,因為它們能標識死鎖或者其他異常行為的來源。 Lock 類只是普通的類,JVM 不知道具體哪個線程擁有 Lock 對象。三、ReentrantLock
1、實現可輪詢的鎖請求 ? ? ? ?在內部鎖中,死鎖是致命的——唯一的恢復方法是重新啟動程序,唯一的預防方法是在構建程序時不要出錯。而可輪詢的鎖獲取模式具有更完善的錯誤恢復機制,可以規避死鎖的發生。?
? ? ? ?如果你不能獲得所有需要的鎖,那么使用可輪詢的獲取方式使你能夠重新拿到控制權,它會釋放你已經獲得的這些鎖,然后再重新嘗試。可輪詢的鎖獲取模式,由tryLock()方法實現。此方法僅在調用時鎖為空閑狀態才獲取該鎖。如果鎖可用,則獲取鎖,并立即返回值true。如果鎖不可用,則此方法將立即返回值false。此方法的典型使用語句如下:?
Lock lock = ...; if (lock.tryLock()) { try { // manipulate protected state } finally { lock.unlock(); } } else { // perform alternative actions }
2、實現可定時的鎖請求 ? ? ? ?當使用內部鎖時,一旦開始請求,鎖就不能停止了,所以內部鎖給實現具有時限的活動帶來了風險。為了解決這一問題,可以使用定時鎖。當具有時限的活?動調用了阻塞方法,定時鎖能夠在時間預算內設定相應的超時。如果活動在期待的時間內沒能獲得結果,定時鎖能使程序提前返回。可定時的鎖獲取模式,由tryLock(long, TimeUnit)方法實現。?
3、實現可中斷的鎖獲取請求?
? ? ? ?可中斷的鎖獲取操作允許在可取消的活動中使用。lockInterruptibly()方法能夠使你獲得鎖的時候響應中斷。
四、條件變量Condition
? ? ? ?條件變量很大一個程度上是為了解決Object.wait/notify/notifyAll難以使用的問題。
? ? ? ?條件(也稱為條件隊列?或條件變量)為線程提供了一個含義,以便在某個狀態條件現在可能為 true 的另一個線程通知它之前,一直掛起該線程(即讓其“等待”)。因為訪問此共享狀態信息發生在不同的線程中,所以它必須受保護,因此要將某種形式的鎖與該條件相關聯。等待提供一個條件的主要屬性是:以原子方式?釋放相關的鎖,并掛起當前線程,就像?Object.wait?做的那樣。
? ? ? ?上述API說明表明條件變量需要與鎖綁定,而且多個Condition需要綁定到同一鎖上。前面的Lock中提到,獲取一個條件變量的方法是Lock.newCondition()。
void await() throws InterruptedException; void awaitUninterruptibly(); long awaitNanos(long nanosTimeout) throws InterruptedException; boolean await(long time, TimeUnit unit) throws InterruptedException; boolean awaitUntil(Date deadline) throws InterruptedException; void signal(); void signalAll();? ? ? ?以上是Condition接口定義的方法,await*對應于Object.wait,signal對應于Object.notify,signalAll對應于Object.notifyAll。特別說明的是Condition的接口改變名稱就是為了避免與Object中的wait/notify/notifyAll的語義和使用上混淆,因為Condition同樣有wait/notify/notifyAll方法。
? ? ? ?每一個Lock可以有任意數據的Condition對象,Condition是與Lock綁定的,所以就有Lock的公平性特性:如果是公平鎖,線程為按照FIFO的順序從Condition.await中釋放,如果是非公平鎖,那么后續的鎖競爭就不保證FIFO順序了。
一個使用Condition實現生產者消費者的模型例子如下。
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class ProductQueue<T> { private final T[] items; private final Lock lock = new ReentrantLock(); private Condition notFull = lock.newCondition(); private Condition notEmpty = lock.newCondition(); // private int head, tail, count; public ProductQueue(int maxSize) { items = (T[]) new Object[maxSize]; } public ProductQueue() { this(10); } public void put(T t) throws InterruptedException { lock.lock(); try { while (count == getCapacity()) { notFull.await(); } items[tail] = t; if (++tail == getCapacity()) { tail = 0; } ++count; notEmpty.signalAll(); } finally { lock.unlock(); } } public T take() throws InterruptedException { lock.lock(); try { while (count == 0) { notEmpty.await(); } T ret = items[head]; items[head] = null;//GC // if (++head == getCapacity()) { head = 0; } --count; notFull.signalAll(); return ret; } finally { lock.unlock(); } } public int getCapacity() { return items.length; } public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } }? ? ? ?在這個例子中消費take()需要 隊列不為空,如果為空就掛起(await()),直到收到notEmpty的信號;生產put()需要隊列不滿,如果滿了就掛起(await()),直到收到notFull的信號。
? ? ? ?可能有人會問題,如果一個線程lock()對象后被掛起還沒有unlock,那么另外一個線程就拿不到鎖了(lock()操作會掛起),那么就無法通知(notify)前一個線程,這樣豈不是“死鎖”了?
? ? ? ?上一節中說過多次ReentrantLock是獨占鎖,一個線程拿到鎖后如果不釋放,那么另外一個線程肯定是拿不到鎖,所以在lock.lock()和lock.unlock()之間可能有一次釋放鎖的操作(同樣也必然還有一次獲取鎖的操作)。我們再回頭看代碼,不管take()還是put(),在進入lock.lock()后唯一可能釋放鎖的操作就是await()了。也就是說await()操作實際上就是釋放鎖,然后掛起線程,一旦條件滿足就被喚醒,再次獲取鎖!
public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); }
? ? ? ?上面是await()的代碼片段。上一節中說過,AQS在獲取鎖的時候需要有一個CHL的FIFO隊列,所以對于一個Condition.await()而言,如果釋放了鎖,要想再一次獲取鎖那么就需要進入隊列,等待被通知獲取鎖。完整的await()操作是安裝如下步驟進行的:
? ? ? ?這里再回頭介紹Condition的數據結構。我們知道一個Condition可以在多個地方被await*(),那么就需要一個FIFO的結構將這些Condition串聯起來,然后根據需要喚醒一個或者多個(通常是所有)。所以在Condition內部就需要一個FIFO的隊列。
private transient Node firstWaiter; private transient Node lastWaiter; ? ? ? ?上面的兩個節點就是描述一個FIFO的隊列。我們再結合前面提到的節點(Node)數據結構。我們就發現Node.nextWaiter就派上用場了!nextWaiter就是將一系列的Condition.await*串聯起來組成一個FIFO的隊列。2、signal/signalAll 操作
? ? ? ?await*()清楚了,現在再來看signal/signalAll就容易多了。按照signal/signalAll的需求,就是要將Condition.await*()中FIFO隊列中第一個Node喚醒(或者全部Node)喚醒。盡管所有Node可能都被喚醒,但是要知道的是仍然只有一個線程能夠拿到鎖,其它沒有拿到鎖的線程仍然需要自旋等待,就上上面提到的第4步(acquireQueued)。
private void doSignal(Node first) { do { if ( (firstWaiter = first.nextWaiter) == null) lastWaiter = null; first.nextWaiter = null; } while (!transferForSignal(first) && (first = firstWaiter) != null); } private void doSignalAll(Node first) { lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter; first.nextWaiter = null; transferForSignal(first); first = next; } while (first != null); }? ? ? ?上面的代碼很容易看出來,signal就是喚醒Condition隊列中的第一個非CANCELLED節點線程,而signalAll就是喚醒所有非CANCELLED節點線程。當然了遇到CANCELLED線程就需要將其從FIFO隊列中剔除。
總結
以上是生活随笔為你收集整理的Java基础——深入理解ReentrantLock的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: rtsp和sdp
- 下一篇: 一类和二类银行卡有什么区别 银行的一类卡