久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

预告:无穷小微积分改版,寻找接班人

發布時間:2023/12/14 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 预告:无穷小微积分改版,寻找接班人 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

??? 敬告廣大讀者,新年將至。無窮小微積分網站將要改版,尋找接班人。
??? 特此公告。
袁萌? 陳啟清? 12月30日
附件:超實微積分原文
Hyperreal Calculus MAT2000 –– Project in Mathematics
Arne Tobias Malkenes ?degaard Supervisor: Nikolai Bj?rnest?l Hansen
Abstract This project deals with doing calculus not by using epsilons and deltas, but by using a number system called the hyperreal numbers. The hyperreal numbers is an extension of the normal real numbers with both in?nitely small and in?nitely large numbers added. We will ?rst show how this systemcanbecreated,and thenshowsomebasicpropertiesofthehyperreal numbers. Then we will show how one can treat the topics of convergence, continuity, limits and di?erentiation in this system and we will show that the two approaches give rise to the same de?nitions and results.
Contents
1 Construction of the hyperreal numbers 3
1.1 Intuitive construction . 3
1.2 Ultra?lters . . . . . . . . . . . 3
1.3 Formal construction . . . . . . . . . . . . . . . . 4
1.4 In?nitely small and large numbers . . . . . . . 5
1.5 Enlarging sets . . . . . . . . . . 5
1.6 Extending functions . . .. . . . . 6
2 The transfer principle 6
2.1 Stating the transfer principle . . . . . . . 6
2.2 Using the transfer principle . . . . .? . . . . . 7
3 Properties of the hyperreals 8
3.1 Terminology and notation . .. . 8
3.2 Arithmetic of hyperreals . .? . . 9
3.3 Halos . . . . . . . . . . . . . . . . . 9
3.4 Shadows . . . .? .? . . . . . . . . . 10
4 Convergence 11
4.1 Convergence in hyperreal calculus. . . . .. . . . 11
4.2 Monotone convergence . . . 12
5 Continuity 13
5.1 Continuity in hyperreal calculus . . . . . . . . . . . . 13
5.2 Examples . . . . . .? . . . . 14
5.3 Theorems about continuity.? 15
5.4 Uniform continuity . . ... 16
6 Limits and derivatives 17
6.1 Limits in hyperreal calculus . .17
6.2 Di?erentiation in hyperreal calculus . . . . . . .. . 18
6.3 Examples . . . . . . . . . . 18
6.4 Increments . . . . .? . . . 19
6.5 Theorems about derivatives . 19
1 Construction of the hyperreal numbers
1.1 Intuitive construction We want to construct the hyperreal numbers as sequences of real numbers hrni = hr1,r2,...i, and the idea is to let sequences where limn→∞ rn = 0 represent in?nitely small numbers, or in?nitesimals, and let sequences where limn→∞rn =∞ represent in?nitely large numbers. However, if we simply let each hyperreal number be de?ned as a sequence of real numbers, and let addition and multiplication be de?ned as elementwise addition and multiplication of sequences, wehavetheproblemthatthisstructure is not a ?eld, since h1,0,1,0,...i
h0,1,0,1,...i=h0,0,0,0,...i. The way we solve this is by introducing an equivalence relation on the set of real-valued sequences. We want to identify two sequences if the set of indices for which the sequences agree is a large subset of N, for a certain technical meaning of large. Let us ?rst discuss some properties we should expect this concept of largeness to have. ? N itself must be large, since a sequence must be equivalent with itself. ? If a set contains a large set, it should be large itself. ? The empty set ? should not be large. ? We want our relation to be transitive, so if the sequences r and s agree on a large set, and s and t agree on a large set, we want r and t to agree on a large set.
1.2 Ultra?lters Our model of a large set is a mathematical structure called an ultra?lter. De?nition 1.1 (Ultra?lters). We de?ne an ultra?lter on N, F, to be a set of subsets of N such that: ? If X ∈ F and X ? Y ? N, then Y ∈ F. That is, F is closed under supersets. ? If X ∈F and Y ∈F, then X ∩Y ∈F. F is closed under intersections. ? N∈F, but ?6∈F. ? For any subset A of N, F contains exactly one of A and N\A. We say that an ultra?lter is free if it contains no ?nite subsets of N. Note that a free ultra?lter will contain all co?nite subsets of N (sets with ?nite complement) due to the last property of an ultra?lter. Theorem 1.2. There exists a free ultra?lter on N. Proof. See [Kei76, p. 49]. ?
2
1.3 Formal construction Let F be a ?xed free ultra?lter on N. We de?ne a relation ≡ on the set of real-valued sequences RN by letting hrni≡hsni ?? {n ∈N| rn = sn}∈F. Proposition 1.3 (Equivalence). The relation ≡ is an equivalence relation on RN. Proof. We check all needed properties of an equivalence relation. Re?exivity Since the set {n ∈N| rn = rn}= N, and N∈F, ≡ is re?exive. Symmetry The sets {n ∈N| rn = sn} and {n ∈N| sn = rn} are the same, so if one belongs to F, so does the other. Transitivity Assume that hrni≡hsni and hsni≡htni. Then both {n ∈ N | rn = sn}∈F and {n ∈N| sn = tn}∈F. Since {n ∈N| rn = sn}∩{n ∈ N| sn = tn}?{n ∈N| rn = tn}, and F is closed under intersections and supersets, {n ∈N| rn = tn}∈F, and so hrni≡htni, as desired.?? Since ≡ is an equivalence relation, we can de?ne the set of hyperreal numbers ?R as the set of real-valued sequences modulo the equivalence relation ≡. In symbols, ?R ={[r]| r ∈RN}= RN/ ≡ . We de?ne addition and multiplication of elements in ?R by doing elementwise addition and multiplication in the related sequences, more formally as [r]+[s]=[hrni]+[hsni]=[hrn +sni] [r]?[s]=[hrni]?[hsni]=[hrn ?sni]. We de?ne the ordering relation < by letting [r] < [s] ?? {n ∈N| rn < sn}∈F. At this point, let us introduce some notation to make our arguments easier to read. For two sequences hrni and hsni, we denote the agreement set {n ∈N| rn = sn} byJr = sK. We can apply the same notation to other relations, so for example we haveJr < sK={n ∈N| rn < sn}. Proposition 1.4. The operations + and?are well-de?ned, and so is the relation <. Proof. We ?rst show that + is well-de?ned. If we have that hrni ≡ hr0 ni and hsni ≡ hs0ni, thenJr = r0K∈ F andJs = s0K∈ F, which means thatJr = r0K∩Js = s0K∈F. What we now need to show is thatJr + s = r0 + s0K∈F. If, for some k ∈ N, both rk = r0 k and sk = s0 k, then rk + sk = r0 k + s0 k, hence if k ∈Jr = r0K∩Js = s0K, then k ∈Jr + s = r0 + s0K, which shows that Jr = r0K∩Js = s0K?Jr + s = r0 + s0K. SinceJr = r0K∩Js = s0K∈ F, so is Jr +s = r0 +s0K. So if r ≡ r0 and s ≡ s0, r +s ≡ r0 +s0, which shows that the operation is well-de?ned. Showing that ? is well-de?ned is similar. 3
We will now show that < is well-de?ned, which means that we need to show that if hrni ≡ hr0 ni and hsni ≡ hs0ni, then ifJr < sK∈ F, thenJr0 < s0K∈ F.Firstly, assume that Jr = r0K∈F and thatJs = s0K∈F. Then, we need to provethat if Jr < sK∈F thenJr0 < s0K∈F. So let us assume thatJr < sK∈F, and then prove thatJr0 < s0K∈F. By our assumptions, we have thatJr = r0K∩Js = s0K∩Jr < sK∈ F. Ifk ∈Jr = r0K∩Js = s0K∩Jr < sK, then rk = r0 k, sk = s0 k and rk < sk, and therefore r0 k < s0 k, so k ∈Jr0 < s0K. So,Jr = r0K∩Js = s0K∩Jr < sK?Jr0 < s0K,and since F is closed under supersets, we conclude thatJr0 < s0K∈F, whichshows that < is well-de?ned.?? 1.4 In?nitely small and large numbers One of the main reasons for constructing the hyperreals is that we want to have access to in?nitely large and in?nitely small numbers, and now we can prove their existence. Theorem 1.5. There exists a number ε ∈ ?R such that 0 < ε < r for any positive real number r, and there exists a number ω ∈ ?R such that ω > r for any real number r. Proof. First, we need to talk about real numbers in ?R. The way to do this is that given a real number r ∈R, we can identify this with a hyperreal number ?r ∈ ?R as ?r =hr,r,...i. We will generally omit the ?-decoration, and simply refer to this number as r. Now, let us turn to the actual proof. Let ε =h1, 1 2,...i =h1 ni . For anypositive real number r, the set {n ∈ N | 1 n > r} must be ?nite, and therefore {n ∈N| 1 n < r}isco?nite,andhencebelongstoourfreeultra?lterF. Therefore, we can conclude that ε < r. Also, since {n ∈N|0 < 1 n}= N∈F, it must bethe case that 0 < ε. So the number ε is a hyperreal number which is greater than 0, but smaller than any positive real number. Let ω =[h1,2,...i]=[hni]. For any real number r, the set{n ∈N| r ≥ n}is ?nite, and hence{n ∈N| r < n}is co?nite, and belongs toF, which means that ω > r. This proves that ω is a hyperreal number greater than any real number. ?
1.5 Enlarging sets For a given subset A of R we can de?ne an “enlarged” subset ?A of ?R by saying that a hyperreal number r is an element in ?A if and only if the set of n such that rn is an element in A is large. Formally this can be de?ned as [r]∈?A ?? {n ∈N| rn ∈ A}∈F. Again, we need to check that this is well-de?ned. Using theJ...Knotation,let Jr ∈ AK={n ∈N| rn ∈ A}. We have that Jr = r0K∩Jr ∈ AK?Jr0 ∈ AK,so if r ≡ r0 andJr ∈ AK∈F, thenJr0 ∈ AK∈F, which shows that enlargements are well-de?ned.
4
An example of this is if A = N and ω =h1,2,3,...i. ThenJω ∈NK= N∈F,so ω ∈?N. Wewillrefertotheset ?N asthehypernaturals. Similarly, if A =(0,1)and r =h0.9,0.99,0.999,...i. ThenJr ∈NK= N∈F, so r ∈?(0,1). 1.6 Extending functions An important tool in non-standard analysis is to take a function f: R → R and extend it to a function ?f: ?R→?R. This is done by applying the function to each element in the sequence representing the given hyperreal number. We de?ne the extension as follows: ?f([hr1,r2,...i])=[hf(r1),f(r2),...i]. Again, we need to prove that this is well-de?ned. First, let f ?r denote hf(r1),f(r2),...i. In general,Jr = r0K?Jf ?r = f ?r0K, and so if r ≡ r0, then ?f(r)= f ?r ≡ f ?r0 = ?f(r0). Hence the function is well-de?ned. A function f: A →R de?ned on some subset A of R can also be extended to a function ?f: ?A →?R, but not in exactly the same way as above. Since r can be in ?A without all elements of r being in A, there can be indices i for which f(ri) is not de?ned. In order to get around this, we let f(ri) = 0 whenever ri 6∈ A. More formally, let sn =(f(rn) if rn ∈ A 0 otherwise and de?ne ?f([hrni])=[hsni]. Since we have that ?f(r)= f(r) whenever r ∈ A, ?f extends f. Therefore we will often simply drop the ?-decoration, and simply refer to the extended function as f as well. An important subject related to this construction is sequences. A sequence hs1,s2,...i is simply a function s: N→R, and so by this construction can be extendedtoahypersequence s: ?N→?R,whichmeansthattheterm sn isde?ned even when n ∈?N\N. 2 The transfer principle 2.1 Stating the transfer principle Oneofthemostimportanttoolsofnon-standardanalysisisthetransferprinciple, a way to show that a certain type of statement is true when talking about the real numbers if and only if a certain related statement is true when talking about the hyperreal numbers. 1 First, we introduce the set of sentences which the transfer principle applies to. This set is basically the set of all sentences (formulas with no free variables) in a language of ?rst-order logic which consists of a constant for each real number, a function symbol for each real function, and a relation symbol for each 1This is a rather cursory introduction to the tranfer principle. For a more in-depth explanation, see [Gol98, pp. 35-47].
5
relationonthereals. However, insteadofusingthequanti?ers(?x)and(?y), our sentences use quanti?ers of the form (?x ∈ A) and (?y ∈ B) where A and B are subsets of R. Some examples of such sentences are (?n ∈N)(?m ∈N)(m > n), (?x ∈R)(?y ∈R)(x+y = y) which state respectively that there is no biggest natural number and there is an additive identity for the reals. Let us call such a sentence an L-sentence. Now, we de?ne the ?-transform of an L-sentence. We take a sentence ?, and create a related sentence ??. An L-sentence ? contains symbols P, f, and r for relations, functions, and constants on R. To create ??, we replace P by ?P for all relations P, replace f by ?f for all functions f, and replace r by ?r for all constants r. Some examples of this are: ? The ?-transform of the sentence (?n ∈ N)(?m ∈ N)(m > n) is (?n ∈ ?N)(?m ∈?N)(m ?> n). ? The ?-transform of (?x ∈R)(sin(x) < 2) is (?x ∈?R)(?sin(x)?< ?2). Wewillgenerallyfollowtheconventionsthatweomitthe?forconstants,most functions, and simple equalities and inequalities. With these conventions, the above sentences become (?n ∈?N)(?m ∈?N)(m > n) and (?x ∈?R)(sin(x) < 2). Now we state the transfer principle, which we will take as true without proof. Theorem 2.1 (Transfer principle). An L-sentence ? is true if and only if its ?-transform ?? is true. Some remarks are in order. It is worth pointing out that one can go in both directions, that is one can go from R to ?R, and from ?R to R. If one decides to go in this last direction, it is important that the statement is the ?-transform of an L-sentence, so for example it can contain no hyperreal constants. A way to get around this is by replacing the constant with a variable x, and adding the quanti?er (?x ∈?A) for some A ?R in front, which is a technique we will use. In many cases, we will not explicitly write down the full sentence, but rather state things like “since s < n for all natural n, by transfer it also also true for any hypernatural n”.
2.2 Using the transfer principle Theorem 2.2. The structureh?R,+,?,<iis an ordered ?eld with zero and unity. Proof. The way we prove this is by using the transfer principle. We take the fact that R is an ordered ?eld as true. This can be stated by a number of logical sentences. The fact that addition is commutative in R can be expressed as the sentence (?x,y ∈ R)(x+y = y +x), and so by the transfer principle, we can conclude that (?x,y ∈ ?R)(x+y = y +x), and so addition is commutative in ?R. We leave out the full details, but this procedure can then be done for all the axioms for ordered ?elds (since they are all ?rst-order axioms), and so we conclude that h?R,+,?,<i is also an ordered ?eld.?? Remark. One important property of the standard real numbers is that they are complete, that is any subset of R which is non-empty and bounded above has a least upper bound. The reason for why this cannot be proven to hold for ?R is that this can only be expressed using second-order logic, since you need to
6
talk about subsets of R, not just elements of R. In fact, ?R is not complete. An example of this is that the open interval of real numbers (0,1) does not have a least upper bound in ?R. Proposition 2.3. For any two subsets A and B of R, we have that ? ?(A∪B)= ?A∪?B ? ?(A∩B)= ?A∩?B ? ?(A\B)= ?A\?B. Proof. We prove the statement about unions, but the other two statements can be proven similarly. The statement (?x ∈ R)(x ∈ (A∪B) ? x ∈ A∨x ∈ B) is true for any two subsets A and B of R, basically by the de?nition of unions. Using the transfer principle, the statement (?x ∈ ?R)(x ∈ ?(A ∪ B) ? x ∈ ?A∨x ∈?B) is also true. We also have that for any two subsets X and Y of ?R, (?x ∈?R)(x ∈(X∪Y)? x ∈ X∨x ∈ Y). Combining these last two statements, letting X = ?A and Y = ?B,wegetthat(?x ∈?R)(x ∈?(A∪B)? x ∈(?A∪?B)), which shows that ?(A∪B)= ?A∪?B.?? Remark. It is worth noting that ?Sn∈N Andoes not need to be equal to Sn∈N?An. If An ={n}, then ?Sn∈N An= ?N, butSn∈N?An= N. 3 Properties of the hyperreals 3.1 Terminology and notation At this point we introduce some terminology and notation for talking about hyperreal numbers. We say that a hyperreal number b is: ? limited if r < b < s for some r,s ∈R, ? positive unlimited if r < b for all r ∈R, ? negative unlimited if b < r for all r ∈R, ? unlimited if it is positive or negative unlimited, ? positive in?nitesimal if 0 < b < r for all positive r ∈R, ? negative in?nitesimal if r < b < 0 for all negative r ∈R, ? in?nitesimal if it is positive in?nitesimal, negative in?nitesimal or 0, ? appreciable if it is limited but not in?nitesimal. We will use the terms limited and unlimited, rather than ?nite and in?nite, when referring to individual numbers. Finite and in?nite are terms we use for sets only. For any subset X of ?R, we de?ne X∞ = {x ∈ X | x is unlimited}, X+ = {x ∈ X | x > 0}, and X? = {x ∈ X | x < 0}. These notations can also be combined, and so X+ ∞ denotes all positive unlimited members of X.
7
3.2 Arithmetic of hyperreals When reasoning about hyperreals, it is useful to have certain rules for computing them, for example that the sum of two in?nitesimals is itself in?nitesimal. Here are some such rules for computing with hyperreal numbers. If ε and δ are in?nitesimals, b and c are appreciable, and H and K are unlimited, then: ? ε+δ is in?nitesimal, ? b+ε is appreciable, ? H +ε and H +b are unlimited, ? b+c is limited, ? ?ε is in?nitesimal, ? ?b is appreciable, ? ?H is unlimited, ? ε?δ and ε?b are in?nitesimal, ? b?c is appreciable, ? b?H and H ?K are unlimited, ? 1 ε is unlimited if ε 6=0, ? 1 b is appreciable, ? 1 H is in?nitesimal, ? ε b, ε H and b H are in?nitesimal, ? b c is appreciable, ? b ε, H ε and H b are unlimited if ε 6=0. We do not give a proof for any of these rules, but they can be proven by using the transfer principle, or by reasoning about sequences of reals. The following expressions do not have such a rule, and can all take on in?nitesimal, appreciable, and unlimited values: ε δ, H K, ε?H, H +K. 3.3 Halos A hyperreal b is said to be in?nitely close to a hyperreal c if b?c is in?nitesimal, and this is denoted by b ' c. This de?nes an equivalence relation on ?R, and we de?ne the halo of b to be the '-equivalence class hal(b)={c ∈?R| b ' c}. Said di?erently, the halo of b is the set of all hyperreals which are in?nitely close to b. Proposition 3.1. If two real numbers b and c are in?nitely close, that is if b ' c, then b = c. Proof. Suppose that b ' c with b and c real, but that b 6= c. Then there is a non-zero real number r such that b?c = r. But this contradicts the assumption that b ' c, since r is not an in?nitesimal. ?
8
Proposition 3.2. Suppose that b and c are limited, and that b ' b0 and c ' c0. Then b±c ' b0±c0 and b?c ' b0?c0. Furthermore, if c 6'0, then b/c ' b0/c0. Proof. From our assumptions, we have that b?b0 = εb and c?c0 = εc, with εb and εc being in?nitesimal. It is also the case that both b0 and c0 are limited. We want to show that b ± c ' b0 ± c0, and this is done by showing that( b±c)?(b0±c0) is in?nitesimal. We have that (b±c)?(b0±c0)=(b?b0)±(c?c0)= εb ±εc. Since both the sum of and the di?erence between two in?nitesimals is itself in?nitesimal by Section 3.2, we have that (b±c)?(b0±c0) is in?nitesimal, and hence that b±c ' b0±c0. The case b?c ' b0?c0 is proven similarly. We have that b?c?b0?c0 = b?c?b?c0 +b?c0?b0?c0 = b?(c?c0)+(b?b0)?c0 = b?εc +εb ?c0 whichisin?nitesimalsincetheproductofalimitednumberwithanin?nitesimalis in?nitesimal and the sum of two in?nitesimals is in?nitesimal. Hence b?c ' b0?c0. For the last case we have that
b c ?
b0 c0
= b?c0?b0?c c?c0 = b?c0?b?c+b?c?b0?c c?c0 = b?(c?c0)+c?(b?b0) c?c0 = c?εb ?b?εc c?c0 . Now, if c 6'0, the denominator is the product of two appreciable numbers, which is also appreciable. Since the numerator is in?nitesimal by a similar argument to thecaseof products, the quotientis itself in?ntesimal, andhence b/c ' b0/c0.?? Remark. The ?rst part of the prosition, namely that b±c ' b0±c0, holds also for unlimited b and c, but the other parts do not. To show this, let H be some positive unlimited number, and let b0, c and c0 equal H, and let b equal H + 1 H. Then b ' b0 and c ' c0, but b?c?b0?c0 =H + 1 H?H ?H ?H = H2 +1?H2 =1, which is not in?nitesimal, and so b?c 6' b0?c0. A similar counterexample can also be produced for b/c.
3.4 Shadows Theorem 3.3 (Existence of shadows). Every limited hyperreal b is in?nitely close to one and only one real number s. This real number is called the shadow of b, which is denoted by sh(b).
9
Proof. Let A ={r ∈R| r < b}. Since A is a non-empty set which is bounded above, it has a least upper bound of A in R by the (Dedekind) completeness of R. Call this real number s. We want to show that b ' s, and we do this by showing that |b?s| < εfor all ε ∈ R+. Take any such ε. We show that |b?s| < ε by showing thats ?ε < b < s+ε. Take the case when b < s+ε. Assume that s+ε ≤ b. Then s < s+ ε 2 < s+ε ≤ b. Sinceboth s and ε arereal, sois s+ ε 2, andsince s+ ε 2 < b, s + ε 2 ∈ A. But since s + ε 2 > s, s is not an upper bound of A. But this is a condradiction, so it must be the case that b < s+ε. Now take the case when s?ε < b. Assume that b ≤ s?ε. Then b ≤ s?ε < s? ε 2 < s. Since s? ε 2 ≥ b,s ? ε 2 is an upper bound of A, but s? ε 2 < s, so s is not the least upper bound of A, which is a contradiction. We also need to check that there cannot be more than one shadow of b. Assume that there are two reals s and s0 which are both in?nitely close to b. Thus, by de?nition, b ' s and b ' s0, and so by transitivity of ', s ' s0. But since both s and s0 are real, by Proposition 3.1 we conclude that s = s0.2?? Alternative proof. Watch Babylon 5. ?
4 Convergence 4.1 Convergence in hyperreal calculus The standard way to de?ne convergence in real analysis is that a sequence hsni converges to the limit L ∈ R if for any ε ∈ R+, there exists an mε ∈ N such that |sn ?L| < ε for any n > mε. This can be expressed in formal logic by the sentence (?ε ∈R+)(?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε). The idea that this de?nition formalizes is that a sequence convergences to a real value L if you get very close to L when you get very far out in the sequence. What we do for non-standard analysis is that we say that a sequence converges to L if it gets in?nitely close to L as one gets in?nitely far out in the sequence. The original sequence hsni is only de?ned on the naturals, so one can not go in?nitely far out, but by using how we de?ned hypersequences in Section 1.6, we get a new sequence which is de?ned for all n ∈?N, where we can go in?nitely far out, and we denote this sequence by hsni as well. Theorem 4.1. A sequence of real numbers hsni converges to L if and only if sn ' L for all unlimited n. Proof. Assume that the sequence hsni converges to L. We need to show that sn ' L for any unlimited n, and we do this by proving that |sn ?L| < ε for any positive real ε. So take an ε ∈R+. By the de?nition of convergence, there exists a natural number mε such that |sn ?L| < ε whenever n > mε. Let k be such a natural number. Then the formal statement (?n ∈N)(n > k →|sn ?L| < ε) must hold. By the transfer principle, it must also be the case that (?n ∈?N)(n > k →|sn ?L| < ε) (1) 2This proof, along with several other proofs we give in this article, is a modi?ed version of a proof given in [Gol98].
10
is true. Now, let N be any unlimited number. Since k is limited, we have that N > k, and so by (1) can conclude that |sN ?L| < ε. Since this holds for any positive ε, it must be the case that sN ' L is true, which completes the forward direction of the proof. For the converse, assume that sn ' L for all unlimited n. We want to show that the sequence converges. Take any ε ∈ R+, and ?x an unlimited N ∈?N. Now, if n > N, n must be unlimited, and so sn ' L by our assumption, from which we conclude that |sn ? L| < ε. Formally, this is expressible as (?n ∈?N)(n > N →|sn ?L| < ε). Thus, the sentence (?mε ∈?N)(?n ∈?N)(n > mε →|sn ?L| < ε) must also be true. By transfer, we can conclude that (?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε) must hold. Since ε was taken to be any positive real, we have that the sentence (?ε ∈R+)(?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε) must hold. This is indeed the formal statement for stating that the sequence sn converges, which ?nishes our proof. ?
4.2 Monotone convergence A standard theoremaboutconvergence fromcalculusis thetheorem ofmonotone convergence, which can be stated as Theorem 4.2. Let hs1,s2,...i be a sequence of real numbers which is bounded above and non-decreasing. Then hsni is convergent. The standard proof works by taking the supremum of the set {sn | n ∈N}, and showing that the sequence converges to this number. The non-standard proof also uses the supremum of that set, but in a very di?erent way. Proof. Let sN be an extended term of the sequence, and let b be an upper bound of the sequence. Since the sequence is non-decreasing, s1 ≤ sn for any n, and sn ≤ b must also hold for any n since the sequence was bounded above by b. Thus the statement (?n ∈N)(s1 ≤ n∧n ≤ b) must be true, and so must its ?-transform (?n ∈?N)(s1 ≤ n∧n ≤ b). Applying this to our extended term sN, it is clear that sN is limited and so has a shadow L = sh(sN). What we now want to prove is that L is the least upper bound for the set {sn | n ∈N}. Since a set can only have one least upper bound, this L must be the same for all extended terms, and so all extended terms have the same shadow. Then, for any extended term sN, sN ' L, and then by Theorem 4.1, the sequence must be convergent. If m ≤ n, sm ≤ sn since the sequence is non-decreasing. By transfer, this holds for any m,n ∈?N as well. In particular, if m ∈N, and N is the index for 11
our chosen extended term sN, then sm ≤ sN ' L, and hence sm ≤ L since both sm and L are real. Hence, L ≥ si for any i ∈N, and so L is an upper bound of our set. Now we show that L is the least upper bound. Let r be any upper bound of our set. Then (?n ∈N)(sn ≤ r), and so by using transfer, we must have that sN ≤ r. Then we have that L ' sN ≤ r, and then that L ≤ r, since both L and r are real. So for any upper bound of our set, L is not larger, and so L is the least upper bound, completing our proof. ?
5 Continuity 5.1 Continuity in hyperreal calculus The standard de?nition of continuity states that a function f is continuous at c if for any positive real ε, there exists a positive real δ such that|f(x)?f(c)| < ε whenever |x?c| < δ, which can be expressed by the formal statement (?ε ∈ R+)(?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε). The intuitive notion in this de?nition is that f(x) gets arbitrarily close to f(c) when x gets arbitrarily close to c. What our non-standard de?nition formalizes, is that f(x) is in?nitely close to f(c) when x is in?nitely close to c. Theorem 5.1. A function f: R → R is continuous at c ∈ R if and only if f(x)' f(c) whenever x ' c. Proof. We start by assuming that f is continuous at c, and also that we have a hyperreal x such that x ' c. From this, we want to show that f(x)' f(c), and we do this by showing that |f(x)?f(c)| < ε for all ε ∈R+. Take any positive real ε. By the de?nition of continuity, there exists a δ such that for all real x, |f(x)?f(c)| < ε whenever |x?c| < δ. Fix such a δ. Then, the statement (?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε) must hold, and so by transfer its ?-transform (?x ∈?R)(|x?c| < δ →|f(x)?f(c)| < ε) mustalsohold. Forthe x weassumedwasin?nitesimallycloseto c,thestatement |x?c| < δ →|f(x)?f(c)| < ε is true. But since δ is a positive real and x ' c, it must be true that |x?c| < δ, and so we can conclude that |f(x)?f(c)| < ε. Since this holds for any ε ∈R+, it must be true that f(x)' f(c), which is what we needed to show. For the converse, assume that f(x) ' f(c) whenever x ' c. We want to prove that the formal statement of continuity must be true. First, let ε be any positive real, and let d be any positive in?nitesimal. Then, it must be the case that x ' c whenever|x?c| < d. Then, byassumption, wehavethat f(x)' f(c), and thus that |f(x)?f(c)| < ε for any ε ∈R+. From this we can conclude that if |x?c| < d, then |f(x)?f(c)| < ε. This can be expressed formally as (?x ∈?R)(|x?c| < d →|f(x)?f(c)| < ε). Since this is true, the statement (?δ ∈?R+)(?x ∈?R)(|x?c| < δ →|f(x)?f(c)| < ε) 12
must also be true. But this is the ?-transform of the sentence (?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε), and so by transfer we can conclude that this last sentence is also true. Since ε was chosen arbitrarily, with no conditions other than it being positive and real, we can conclude that the formal statement of continuity, (?ε ∈R+)(?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε) must be true, which concludes our proof.?? This theorem only deals with functions which are de?ned on all of R. In many circumstances it is useful to study functions which are de?ned only on some subset A of R. The proof of Theorem 5.1 can be easily extended to showing the following theorem. Theorem 5.2. The function f: A → R is continuous at c ∈ A if and only if f(x)' f(c) for all x ∈?A with x ' c. Note that we here do not require that f(x)' f(c) for all x,c ∈?A. This turns out to be a stronger condition, and is in fact equivalent with the notion of uniform continuity, which we will discuss later in this section.
5.2 Examples Here we give some examples of using hyperreal calculus to show that some functions are continuous or discontinuous. Proposition 5.3. The function f(x)= x2 is continuous at any a ∈R. Proof. By Theorem 5.1, it su?ces to show that f(x)' f(a) whenever x ' a. If x ' a,thenx = a+εforsomein?nitesimalε. Nowf(x)= f(a+ε)= a2+2aε+ε2. Then f(x)?f(a)= a2 +2aε+ε2?a2 = ε(2a+ε), which is in?nitesimal since the product of a limited number with an in?nitesimal is in?nitesimal. Hence, whenever x ' a, f(x)' f(a), so f is a continuous function.?? Proposition 5.4. The function f de?ned by f(x)=(1 if x is rational 0 if x is irrational is discontinuous at all a ∈R. Proving this with hyperreal calculus is rather straightforward, but requires establishing some propositions ?rst. Proposition 5.5. The extended function ?f can be de?ned as ?f(x)=(1 if x ∈?Q 0 if x 6∈?Q. (2)
13
Proof. By transfer of the true sentences (?x ∈R)(x ∈Q→ f(x)=1) (?x ∈R)(x 6∈Q→ f(x)=0) we can conclude that ?f(x) = 1 if x ∈ ?Q, and that ?f(x) = 0 if x 6∈ ?Q, which shows that the de?nition (2) is a correct de?nition of ?f.?? Proposition 5.6. Any halo contains both hyperrationals (members of ?Q) and hyperirrationals (members of ?R\?Q) Proof. Since any halo contains some hyperreal number r and the hyperreal number r+ε, where ε issomepositivein?nitesimal,italsocontainsallhyperreals between these, the set X ={x ∈?R| r < x < r +ε}. Now, since the sentence (?x,y ∈ R)(?z ∈ Q)(x < y → x < z ∧z < y) is true, using transfer, and applying the statement to r and r +ε, the statement (?z ∈?Q)(r < z∧z < r +ε) is true, and so X ∩?Q6=?, which means that our given halo contains at least one hyperrational number. For the other case, since the sentence (?x,y ∈ R)(?z ∈ (R\Q))(x < y →x < z ∧z < y) is true, using transfer and applying the statement to r and r +ε, the statement (?z ∈ ?(R\Q))(r < z ∧z < r + ε) is true, which means that X ∩?(R\Q)6=?, so our halo contains at least one hyperreal which is a member of ?(R\Q). But by Proposition 2.3, ?(R\Q)= ?R\?Q, so our halo contains at least one member of ?R\?Q, or a hyperirrational.?? Proof of Proposition 5.4. From these two propositions, we can show that f is not continuous in any point. Let c be a rational number. Then f(c) = 1. By Proposition 5.6, there is a hyperirrational d in hal(c)\?Q, with f(d)=0. Since 06'1, we have that c ' d, but f(c)6' f(d), so f is not continuous in c. Now, let c be an irrational number. Then f(c) = 0. By Proposition 5.6, there is a hyperrational d ∈hal(c)∩?Q, and so f(d)=1. Again we have that c ' d, but f(c)6' f(d), so f is not continuous in c. So regardless of whether c is rational or irrational, f is not continuous in c, and therefore f is discontinuous in all points of R. ?
5.3 Theorems about continuity Theorem 5.7. If f and g are continuous at c, then f + g, f ?g and fg are continuous at c. Furthermore, if g(c)6=0, then f/g is also continuous at c. Proof. Assume that f and g are continuous at c. Hence when x ' c, we have that f(x) ' f(c) and g(x) ' g(c), and these values are all limited. It then follows from Proposition 3.2 that ? If x ' c, then (f +g)(x)= f(x)+g(x)' f(c)+g(c)=(f +g)(c), and so f +g is continuous at c. ? If x ' c, then (f ?g)(x)= f(x)?g(x)' f(c)?g(c)=(f ?g)(c), and so f ?g is continuous at c. ? If x ' c, then (fg)(x) = f(x)?g(x)' f(c)?g(c) = (fg)(c), and so fg is continuous at c.
14
? If x ' c, then (f/g)(x)= f(x)/g(x)' f(c)/g(c)=(f/g)(c). Note that we require that g(c)6=0, and so g(x)6'0, and we can apply Proposition 3.2. Hence f/g is continuous at c.?? Theorem 5.8. If f is continuous at c, and g is continuous at f(c), g ?f is continuous at c. Proof. Let x ' c. Since f is continuous at c, we have that f(x)' f(c). Since g is continuous at f(c), for any number v which is in?nitely close to f(c), we have that g(v) ' g(f(c)). Since f(x) is in?nitely close to f(c), we have that (g?f)(x)= g(f(x))' g(f(c))=(g?f)(c), which proves that g?f is continuous at c.?? Theorem 5.9 (The Intermediate Value Theorem). Let f: [a,b] → R be a continuous function. Then for every real number d strictly between f(a) and f(b) there exists a real number c ∈(a,b) such that f(c)= d. Proof. Assume that f(a) < d < f(b). The case where f(a) > d > f(b) is similar. For each n ∈N, we partition [a,b] into n subintervals of equal length b?a n . These intervals then have the endpoints pk = a + kb?a n for 0 ≤ k ≤ n. Now, we lets n be the greatest endpoint for which f(pk) < d. sn is then the maximum of the set {pk | f(pk) < d}, which exists since the set is ?nite and non-empty (it contains p0 = a since f(a) < d by assumption). Since f(b) > d, pn = b 6∈{pk | f(pk) < d}. Thereforewehavethat a ≤ sn < bforall n ∈N. Byconstructionof sn itmustbetruethat f(sn) < d ≤ f(sn+ b?a n ) for any n ∈N. By transfer, we conclude that both of these statements also hold for any n ∈?N. Now, let N be an unlimited hypernatural. We have that a ≤ sN < b, hences N is limited and has a shadow c =sh(sN)∈R. Now, since N is unlimited, b?a N is in?nitesimal, and so we have that sN ' c and sN + b?a N ' c. Now, by theassumption that f is continuous, and our equivalent formulation of continuity, we have that f(sN)' f(c) and fsN + b?a N ' f(c). Therefore, it is the casethat f(c)' f(sN) < d ≤ fsN + b?a N ' f(c). Therefore f(c) ' d, but since both f(c) and d are real, we can conclude that f(c)= d, which completes the proof. ?
5.4 Uniform continuity The notion of uniform continuity is a strengthening of the ordinary notion of continuity, and can be expressed with the formal sentence (?ε ∈ R+)(?δ ∈ R+)(?x,y ∈ A)(|x?y| < δ →|f(x)?f(y)| < ε). The big di?erence here is that for a given ε, the same δ should work for all x,y ∈ A, whereas in the ordinary notion of continuity, δ can depend on x. Theorem 5.10. The function f: A →R is uniformly continuous on A if and only if f(x)' f(y) whenever x ' y for all x,y ∈?A.
15
Proof. This can be proven in a similar manner to the theorem for standard continuity, but then using the formal sentence (?ε ∈ R+)(?δ ∈ R+)(?x,y ∈ A)(|x?y| < δ →|f(x)?f(y)| < ε).?? Theorem 5.11. If f is continuous on [a,b], then f is uniformly continuous on [a,b]. Proof. Assume that f is continuous. Now, take hyperreals x,y ∈ ?[a,b] with x ' y. Let c = sh(x). Then since a ≤ x ≤ b, and x ' c, then c ∈ [a,b], and so by assumption f is continuous at c. Since both c ' x and c ' y, we have that f(c)' f(x) and f(c)' f(y) by the continuity of f. By the transitivity of ', we conclude that f(x)' f(y), and hence that f is uniformly continuous on [a,b].?? Remark. This proof does not transfer to more general intervals (for example (0,1) or [0,∞]) since it is a necessary part of the proof that the shadow of x is contained in the original interval, but for these intervals this is not guaranteed. As an example, let (0,1) be our interval and let x = ε be a positive in?nitesimal, which is in ?(0,1). Then c =sh(x)=06∈(0,1). Proposition 5.12. f(x)= 1 x is not uniformly continuous on (0,1). Proof. Let H be any positive unlimited hyperreal. Then H +1 is also unlimited. Hence both 1 H and 1 H+1 are positive in?nitesimals, and hence we have 1 H ' 1 H+1 and 1 H , 1 H+1 ∈?(0,1). Howeverf1 H= H andf1 H+1= H+1,butH 6' H+1.Therefore we have x,y ∈ ?(0,1) such that f(x) 6' f(y), so f is not uniformlycontinuous. ?
6 Limits and derivatives 6.1 Limits in hyperreal calculus In order to talk about derivatives of functions, we want to be able to talk about limits of functions. In standard analysis, L is the limit of f as x goes to c, written limx→c f(x) = L if for any ε ∈ R+, there exists a δ ∈ R+ such that |f(x)?L| < ε whenever|x?c| < δ. Theintuitionbehindthisde?nitionisthat f gets very close to L as x gets very close to c. The de?nition using non-standard analysis formalizes the intuitive idea that f is in?nitely close to L when x is in?nitely close to c. Given c,L ∈R and a function f de?ned on A ?R, we have that lim x→c f(x)= L ?? f(x)' L for all x ∈?A with x ' c and x 6= c. Similarly, onecande?nedi?erenttypesoflimits, bothone-sidedlimitsandlimits as x tends to ∞. We have that ? limx→c+ f(x)= L i? f(x)' L for all x ∈?A with x ' c and x > c. ? limx→c? f(x)= L i? f(x)' L for all x ∈?A with x ' c and x < c. ? limx→+∞f(x)= L i? f(x)' L for all x ∈?A+ ∞ (and ?A+ ∞ 6=?).
16
? limx→?∞f(x)= L i? f(x)' L for all x ∈?A? ∞
(and ?A? ∞ 6=?). These can be proved in a similar manner to the related theorems for continuity or for convergence, but we will not give the proof here.
6.2 Differentiation in hyperreal calculus In standard analysis, we say that f is di?erentiable at x if
lim h→0
f(x+h)?f(x) h exists, and if it does, we let f0(x) denote the derivative of f in x and f0(x) = limh→0 f(x+h)?f(x) h . Theorem 6.1. If f is de?ned at x ∈R, then L ∈R is the derivative of f at x if and only if for every nonzero in?nitesimal ε, f(x+ε) is de?ned, and f(x+ε)?f(x) ε ' L. Proof. Let g(h) = f(x+h)?f(x) h . Then the statement that limh→0 g(h) = L isequivalent with f having derivative L at x, and so applying the characterisation of limits from Section 6.1, the theorem follows.?? This means that when f is di?erentiable, we can ?nd the derivative as f0(x)= shf(x+ε)?f(x) ε for any non-zero in?nitesimal ε. 6.3 Examples Proposition 6.2. The function f(x) = x2 is di?erentiable at any x ∈R, and f0(x)=2x for all x ∈R. Proof. Using the de?nition, we want to show that f(x+ε)?f(x) ε ' 2x for anyin?nitesimal ε 6=0 and real x. By straightforward calculations, we have that f(x+ε)?f(x) ε = (x+ε)2?x2 ε = x2 +2xε+ε2?x2 ε = ε(2x+ε) ε =2x+ε '2x Since for any ε, f(x+ε)?f(x) ε ' 2x, by Theorem 6.1, f is di?erentiable at allx ∈R, and f0(x)=2x, as we wanted to show.?? Proposition 6.3. The function f(x)=|x| is not di?erentiable at x =0. Proof. Let ε be some positive in?nitesimal. Then f(x+ε)?f(x) ε = |0+ε|?|0| ε = ε ε =1.
17
However, we also have that f(x+(?ε))?f(x) ε
= |0+(?ε)|?|0| ?ε
= ε ?ε
=?1.
Since ?16'1, we have that f(x+ε)?f(x) ε 6' f(x+δ)?f(x) δ for two non-zero in?nitesimals ε and δ = ?ε, and so they can not both be in?nitely close to the same real number L, which means that f is not di?erentiable at 0. ?
6.4 Increments We introduce some notation to simplify our arguments. Let ?x denote som non-zero in?nitesimal, representing a small change or an increment in the value of x. Then we let ?f = f(x+?x)?f(x) denote the corresponding increment in the value of f at x. To be explicit, we should write this as ?f(x,?x), since this value depends on both those variables, but we will mainly use the more convinient shorthand ?f. The way we will use this shorthand is to compute ?f ?x, and if this is always in?nitely close to the same real number, then we have that f0(x)=sh(?f ?x). But since ?f ?x is just an ordinary fraction of hyperreal numbers, we can compute ?f on its own, something which will be useful. An important thing to note is that if f is di?erentiable at x, ?f ?x ' f0(x), and so ?f ?x is limited. Since ?f = ?f ?x?x, we then have that ?f is in?nitesimal, and thus f(x+?x)' f(x) for all in?nitesimal ?x. This proves that Theorem6.4. Ifafunction f: A →Risdi?erentiableat x, then f iscontinuous at x. The lemma that follows is needed mainly in our proof of the chain rule. Lemma 6.5 (Incremental Equation). If f0(x) exists at real x and ?x is in?nitesimal, then there exists an in?nitesimal ε, dependent on x and ?x, such that ?f = f0(x)?x+ε?x Proof. Sincef0(x)exists,wehavethatf0(x)' ?f ?x,andhencethatf0(x)??f ?x = ε for some in?ntesimal ε. Multiplying through by ?x and rearranging, we get that ?f = f0(x)?x+ε?x, which is what we wanted. ?
6.5 Theorems about derivatives Theorem 6.6. If f and g are di?erentiable at x, so is f +g and fg, and we have that ? (f +g)0(x)= f0(x)+g0(x) ? (fg)0(x)= f(x)g0(x)+g(x)f0(x). Proof. We take the case of addition. First we compute ?(f +g). We have that ?(f +g)=(f(x+?x)+g(x+?x))?(f(x)+g(x)) =(f(x+?x)?f(x))+(g(x+?x)?g(x)) =?f +?g
18
and hence that
?(f +g) ?x = ?f ?x + ?g ?x ' f0(x)+g0(x) under the assumption that both f and g are di?erentiable. Since the real value f0(x)+ g0(x) is independent of ?x, we conclude, by Theorem 6.1, that (f +g)0(x)= f0(x)+g0(x). For our proof of the statement regarding multiplication, we need a little trick, namely that f(x+?x)= f(x)+(f(x+?x)?f(x))= f(x)+?f. Then we get that ?(fg)= f(x+?x)g(x+?x)?f(x)g(x) =(f(x)+?f)(g(x)+?g)?f(x)g(x) = f(x)?g +g(x)?f +?f?g which yields that ?(fg) ?x = f(x)?g ?x +g(x)?f ?x + ?f ?x?g ' f(x)g0(x)+g(x)f0(x)+0 where we again use that g and f are di?erentiable. The last term is 0 since ?f ?x is limited and ?g is in?nitesimal. Since this last real number is independent of ?x, weconclude,byapplyingTheorem6.1,that(fg)0(x)= f(x)g0(x)+g(x)f0(x).?? Theorem6.7(ChainRule). If f isdi?erentiableat x ∈R, and g isdi?erentiable at f(x), then g?f is di?erentiable at x with derivative g0(f(x))f0(x). Proof. For any non-zero in?nitesimal ?x, f(x+?x) is de?ned and f(x+?x)' f(x). Since g0(f(x)) exists, g is de?ned at all points in?nitely close to f(x), which means that (g?f)(x+?x)= g(f(x+?x)) is de?ned. Now, we want to express ?(g ? f) in other terms. Again, we use thatf (x+?x)= f(x)+?f. We get that ?(g?f)= g(f(x+?x))?g(f(x))= g(f(x)+?f)?g(f(x)) which shows that ?(g?f) is also the increment of g at f(x) corresponding to ?f. Using the more explicit notation for increments, we have that ?(g?f)(x,?x)=?g(f(x),?f). By the incremental equation applied to g, there exists an in?nitesimal ε such that ?(g?f)= g0(f(x))?f +ε?f and hence that ?(g?f) ?x = g0(f(x))?f ?x +ε?f ?x ' g0(f(x))f0(x)+0 which establishes our claim, namely that g0(f(x))f0(x) is the derivative of g?f at x. ?
19
Theorem 6.8 (Critical Point Theorem). Let f be de?ned on some open interval (a,b), and have a maximum or minimum at x ∈(a,b). If f is di?erentiable at x, then f0(x)=0. Proof. Let f have a maximum at x. By the transfer principle, we conclude that f(x+?x)≤ f(x) and thus that f(x+?x)?f(x)≤0 for all in?nitesimal ?x. Hence for a positive in?nitesimal ε and a negative in?nitesimal δ, we have that f0(x)' f(x+ε)?f(x) ε ≤0≤ f(x+δ)?f(x) δ ' f0(x). Since f0(x) is real, it must be equal to 0. The case when f has a minimum is similar. ?
References
[Gol98] Robert Goldblatt. Lectures on the hyperreals. An introduction to nonstandard analysis. Springer-Verlag, New York, 1998.
[Kei76] H. Jerome Keisler. Foundations of in?nitesimal calculus. 1976.

?

?

總結

以上是生活随笔為你收集整理的预告:无穷小微积分改版,寻找接班人的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

一本久久伊人热热精品中文字幕 | 麻豆av传媒蜜桃天美传媒 | 国产内射爽爽大片视频社区在线 | 日本精品少妇一区二区三区 | 无码国模国产在线观看 | 亚洲成a人一区二区三区 | 日本乱人伦片中文三区 | 风流少妇按摩来高潮 | 久久综合网欧美色妞网 | 国产精品香蕉在线观看 | 国产在线一区二区三区四区五区 | 国产精品人人爽人人做我的可爱 | 伊人久久大香线焦av综合影院 | 狠狠躁日日躁夜夜躁2020 | 国产精品无码mv在线观看 | 国产成人一区二区三区在线观看 | 国产精品久久久午夜夜伦鲁鲁 | 成人女人看片免费视频放人 | 亚洲日韩精品欧美一区二区 | 欧美35页视频在线观看 | 一个人看的www免费视频在线观看 | 成年女人永久免费看片 | 扒开双腿疯狂进出爽爽爽视频 | 久久精品人妻少妇一区二区三区 | 高潮毛片无遮挡高清免费 | 欧美精品国产综合久久 | 熟女少妇在线视频播放 | 久久久精品国产sm最大网站 | 男人扒开女人内裤强吻桶进去 | 欧美 丝袜 自拍 制服 另类 | 精品午夜福利在线观看 | 亚洲一区av无码专区在线观看 | 久久精品国产一区二区三区肥胖 | √8天堂资源地址中文在线 | 久久99精品国产麻豆蜜芽 | 国产精品自产拍在线观看 | 久久熟妇人妻午夜寂寞影院 | 成人毛片一区二区 | 欧美日韩综合一区二区三区 | 丝袜人妻一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 亚洲乱码国产乱码精品精 | 国产99久久精品一区二区 | 久久久久久a亚洲欧洲av冫 | 亚洲国产精品成人久久蜜臀 | 无码任你躁久久久久久久 | 午夜精品一区二区三区的区别 | 少妇激情av一区二区 | 国产精品99久久精品爆乳 | 国产亚av手机在线观看 | 在线观看欧美一区二区三区 | 国产欧美精品一区二区三区 | 人妻少妇精品久久 | 中文无码精品a∨在线观看不卡 | 黑人巨大精品欧美一区二区 | 亚洲熟妇自偷自拍另类 | 精品国产福利一区二区 | 久久无码专区国产精品s | 亚洲国产欧美日韩精品一区二区三区 | 少妇无码一区二区二三区 | 午夜免费福利小电影 | www一区二区www免费 | 国产99久久精品一区二区 | 欧美三级a做爰在线观看 | 国产精品自产拍在线观看 | 日韩精品无码一区二区中文字幕 | 日韩人妻无码一区二区三区久久99 | 伊人久久大香线蕉午夜 | 沈阳熟女露脸对白视频 | 一个人免费观看的www视频 | 日本大香伊一区二区三区 | 4hu四虎永久在线观看 | 爱做久久久久久 | 亚洲精品美女久久久久久久 | 一本色道久久综合狠狠躁 | 日韩精品a片一区二区三区妖精 | 国产激情精品一区二区三区 | 精品国产成人一区二区三区 | 性做久久久久久久免费看 | 久久久久免费精品国产 | 亚洲欧洲日本综合aⅴ在线 | 日韩av无码一区二区三区不卡 | 欧美日韩亚洲国产精品 | 亚洲国产欧美日韩精品一区二区三区 | 亚洲精品鲁一鲁一区二区三区 | 久久久国产精品无码免费专区 | 欧美xxxx黑人又粗又长 | 男人的天堂2018无码 | 无码乱肉视频免费大全合集 | 亚洲国产欧美国产综合一区 | 无码帝国www无码专区色综合 | 久久精品一区二区三区四区 | 无码任你躁久久久久久久 | 四虎国产精品免费久久 | 日韩 欧美 动漫 国产 制服 | www国产亚洲精品久久网站 | 亚洲狠狠婷婷综合久久 | 日韩欧美中文字幕在线三区 | 亚洲中文字幕av在天堂 | 人妻插b视频一区二区三区 | 亚洲七七久久桃花影院 | 精品国产一区av天美传媒 | 强开小婷嫩苞又嫩又紧视频 | 国产精品第一国产精品 | 俺去俺来也www色官网 | 午夜无码区在线观看 | 午夜性刺激在线视频免费 | 亚洲国产精华液网站w | 国产精品无码永久免费888 | 欧美 亚洲 国产 另类 | 亚洲a无码综合a国产av中文 | 无遮挡啪啪摇乳动态图 | 精品久久久久久亚洲精品 | 无码午夜成人1000部免费视频 | 亚洲狠狠婷婷综合久久 | 一本精品99久久精品77 | 亚洲精品一区二区三区婷婷月 | 丝袜美腿亚洲一区二区 | 成人欧美一区二区三区黑人免费 | 亚洲一区二区三区播放 | 青青青爽视频在线观看 | 国产成人无码a区在线观看视频app | 丰满人妻一区二区三区免费视频 | 成人亚洲精品久久久久 | 国产亚洲精品精品国产亚洲综合 | 色 综合 欧美 亚洲 国产 | 一区二区三区高清视频一 | 无码人妻av免费一区二区三区 | 久久久精品国产sm最大网站 | 亚洲精品久久久久久久久久久 | 久久久中文字幕日本无吗 | 欧美日韩综合一区二区三区 | 性生交片免费无码看人 | 玩弄中年熟妇正在播放 | 麻花豆传媒剧国产免费mv在线 | 特黄特色大片免费播放器图片 | 亚洲精品久久久久中文第一幕 | 日韩精品成人一区二区三区 | 亚洲va欧美va天堂v国产综合 | 99久久精品国产一区二区蜜芽 | 免费人成在线视频无码 | 成人精品天堂一区二区三区 | 无码纯肉视频在线观看 | 久久人人爽人人爽人人片av高清 | 最新版天堂资源中文官网 | 亚洲日韩av一区二区三区四区 | 亚洲精品一区二区三区在线观看 | 久久国语露脸国产精品电影 | 国产精品久久久久久亚洲影视内衣 | 色狠狠av一区二区三区 | 日韩av无码中文无码电影 | 中文字幕无码av波多野吉衣 | 久久久久99精品成人片 | 精品熟女少妇av免费观看 | 亚洲成av人综合在线观看 | 97久久精品无码一区二区 | 一本大道伊人av久久综合 | 久久久久久亚洲精品a片成人 | 特级做a爰片毛片免费69 | 国产亚洲视频中文字幕97精品 | 亚洲乱亚洲乱妇50p | 精品欧洲av无码一区二区三区 | 中文字幕乱码中文乱码51精品 | 国产人妻精品一区二区三区不卡 | 日韩精品无码一本二本三本色 | 人人妻人人澡人人爽人人精品浪潮 | 人人妻人人澡人人爽人人精品浪潮 | 天天拍夜夜添久久精品 | 国产美女极度色诱视频www | 男人的天堂2018无码 | 欧美日韩一区二区三区自拍 | 国产无套粉嫩白浆在线 | 亚洲欧洲日本无在线码 | 国产精品亚洲lv粉色 | 大地资源网第二页免费观看 | 国产成人一区二区三区别 | 成人精品视频一区二区 | 亚欧洲精品在线视频免费观看 | 精品国产国产综合精品 | 久久久久国色av免费观看性色 | 色欲综合久久中文字幕网 | 国产疯狂伦交大片 | 最新国产乱人伦偷精品免费网站 | 无遮无挡爽爽免费视频 | 欧美丰满老熟妇xxxxx性 | 樱花草在线社区www | 午夜精品一区二区三区在线观看 | 六十路熟妇乱子伦 | 成人性做爰aaa片免费看不忠 | 荫蒂被男人添的好舒服爽免费视频 | 熟妇人妻无乱码中文字幕 | 曰韩无码二三区中文字幕 | 亚洲国产欧美日韩精品一区二区三区 | 成人免费视频视频在线观看 免费 | 精品久久久久香蕉网 | 婷婷丁香五月天综合东京热 | 人妻互换免费中文字幕 | 狠狠综合久久久久综合网 | 国产亚洲欧美在线专区 | 青草视频在线播放 | 国产办公室秘书无码精品99 | 一区二区传媒有限公司 | 日本熟妇乱子伦xxxx | 久久精品国产一区二区三区肥胖 | 狠狠cao日日穞夜夜穞av | 高清不卡一区二区三区 | 亚洲日韩一区二区三区 | 国产在线aaa片一区二区99 | 亚洲gv猛男gv无码男同 | 亚洲爆乳无码专区 | 熟女体下毛毛黑森林 | 亚洲国产欧美国产综合一区 | 中文字幕日韩精品一区二区三区 | 日韩人妻无码中文字幕视频 | 无码人妻av免费一区二区三区 | 鲁鲁鲁爽爽爽在线视频观看 | 精品人妻av区 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产特级毛片aaaaaa高潮流水 | 又大又紧又粉嫩18p少妇 | 成人女人看片免费视频放人 | 日本一区二区三区免费播放 | 欧洲vodafone精品性 | 2020久久香蕉国产线看观看 | 国产国产精品人在线视 | 中文字幕乱码人妻二区三区 | 嫩b人妻精品一区二区三区 | 国产成人精品优优av | 国产亚洲美女精品久久久2020 | 人妻尝试又大又粗久久 | 无码人妻精品一区二区三区不卡 | 中文字幕乱码亚洲无线三区 | 欧美激情一区二区三区成人 | 国产欧美亚洲精品a | 久久99国产综合精品 | 波多野结衣一区二区三区av免费 | 色狠狠av一区二区三区 | 国产免费久久精品国产传媒 | 国产精品第一国产精品 | 两性色午夜视频免费播放 | 高清无码午夜福利视频 | 国产一区二区三区影院 | 无码国产乱人伦偷精品视频 | 一区二区传媒有限公司 | 国产精品多人p群无码 | 亚洲欧洲中文日韩av乱码 | 国产乱码精品一品二品 | 啦啦啦www在线观看免费视频 | 中文字幕日韩精品一区二区三区 | 青青青手机频在线观看 | 亚洲乱码中文字幕在线 | 欧美成人免费全部网站 | 成人亚洲精品久久久久软件 | 欧美成人午夜精品久久久 | 国产真实伦对白全集 | 亚洲日本一区二区三区在线 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 亚洲人成无码网www | 一本色道久久综合亚洲精品不卡 | 国产va免费精品观看 | 亚洲国产欧美日韩精品一区二区三区 | 日本精品人妻无码77777 天堂一区人妻无码 | 四虎国产精品一区二区 | 欧美国产日韩亚洲中文 | 国产精品人妻一区二区三区四 | 熟妇人妻无码xxx视频 | 亚洲无人区午夜福利码高清完整版 | 国产亚洲精品久久久久久国模美 | 无码午夜成人1000部免费视频 | 天天摸天天透天天添 | 精品一区二区三区波多野结衣 | 精品久久久无码中文字幕 | 桃花色综合影院 | 内射老妇bbwx0c0ck | 丰满少妇高潮惨叫视频 | 九九久久精品国产免费看小说 | 男女爱爱好爽视频免费看 | 一本无码人妻在中文字幕免费 | 国产av剧情md精品麻豆 | 欧洲熟妇精品视频 | 99久久久无码国产aaa精品 | 国产av一区二区精品久久凹凸 | 国产综合在线观看 | 欧美黑人性暴力猛交喷水 | 午夜精品久久久内射近拍高清 | 亚洲 日韩 欧美 成人 在线观看 | 国产无套内射久久久国产 | 日本精品少妇一区二区三区 | 国内精品人妻无码久久久影院蜜桃 | 中文精品无码中文字幕无码专区 | 人妻插b视频一区二区三区 | 久久无码中文字幕免费影院蜜桃 | 精品国产一区二区三区四区 | 澳门永久av免费网站 | 亚洲国产高清在线观看视频 | 亚洲综合无码一区二区三区 | 亚洲欧美色中文字幕在线 | 无码精品人妻一区二区三区av | 久久99久久99精品中文字幕 | 久久久久久久久蜜桃 | 成人欧美一区二区三区黑人免费 | aa片在线观看视频在线播放 | 欧美熟妇另类久久久久久不卡 | 秋霞成人午夜鲁丝一区二区三区 | 亚洲国产精品久久人人爱 | 性开放的女人aaa片 | 无码中文字幕色专区 | 无码国模国产在线观看 | 国产真实夫妇视频 | 久久国产劲爆∧v内射 | 国产偷自视频区视频 | 免费乱码人妻系列无码专区 | 日本在线高清不卡免费播放 | 宝宝好涨水快流出来免费视频 | 18无码粉嫩小泬无套在线观看 | 天天摸天天透天天添 | 亚洲一区二区三区国产精华液 | 中文精品无码中文字幕无码专区 | 东京无码熟妇人妻av在线网址 | 亚洲中文字幕在线无码一区二区 | 国产精品怡红院永久免费 | 性欧美疯狂xxxxbbbb | 国产一区二区三区日韩精品 | 国产偷自视频区视频 | 2019nv天堂香蕉在线观看 | 亚洲区欧美区综合区自拍区 | 黑人大群体交免费视频 | 久久 国产 尿 小便 嘘嘘 | 欧美xxxx黑人又粗又长 | 久久综合给合久久狠狠狠97色 | 亚洲天堂2017无码中文 | 最新国产乱人伦偷精品免费网站 | 无码人妻出轨黑人中文字幕 | 午夜理论片yy44880影院 | 国产精品久久久久影院嫩草 | 女人被男人躁得好爽免费视频 | 超碰97人人做人人爱少妇 | 最近中文2019字幕第二页 | 欧美老熟妇乱xxxxx | 国内精品人妻无码久久久影院蜜桃 | 国产后入清纯学生妹 | 欧美性猛交内射兽交老熟妇 | 俺去俺来也www色官网 | 亚洲精品一区国产 | 国产卡一卡二卡三 | 国产女主播喷水视频在线观看 | 樱花草在线社区www | 国产99久久精品一区二区 | 少妇性荡欲午夜性开放视频剧场 | 中文字幕人妻无码一区二区三区 | 天堂无码人妻精品一区二区三区 | 玩弄少妇高潮ⅹxxxyw | 日本熟妇人妻xxxxx人hd | 全球成人中文在线 | 丰满人妻一区二区三区免费视频 | 国产肉丝袜在线观看 | 人人澡人人妻人人爽人人蜜桃 | 国产乱子伦视频在线播放 | 久久99国产综合精品 | 久久综合九色综合欧美狠狠 | 未满成年国产在线观看 | 国产人妻大战黑人第1集 | 麻花豆传媒剧国产免费mv在线 | 丰满岳乱妇在线观看中字无码 | 亚洲精品中文字幕久久久久 | 亚洲理论电影在线观看 | 老熟女重囗味hdxx69 | 蜜桃视频插满18在线观看 | 成人一在线视频日韩国产 | 永久免费观看国产裸体美女 | 红桃av一区二区三区在线无码av | 国产精品亚洲а∨无码播放麻豆 | 国产内射老熟女aaaa | 国产精品自产拍在线观看 | 国产欧美精品一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 久久久久亚洲精品男人的天堂 | 久久亚洲中文字幕精品一区 | 成 人 网 站国产免费观看 | 亚洲成色www久久网站 | 色噜噜亚洲男人的天堂 | 激情爆乳一区二区三区 | 77777熟女视频在线观看 а天堂中文在线官网 | 亚洲国产精品一区二区美利坚 | 蜜桃臀无码内射一区二区三区 | 无码人妻出轨黑人中文字幕 | 在线天堂新版最新版在线8 | 日本乱偷人妻中文字幕 | 亚洲国产精品久久人人爱 | 少妇一晚三次一区二区三区 | 青青草原综合久久大伊人精品 | 亚洲一区二区三区香蕉 | 久久久久成人精品免费播放动漫 | 牲欲强的熟妇农村老妇女视频 | 麻豆精产国品 | 国产精品亚洲а∨无码播放麻豆 | 中文字幕无码视频专区 | 午夜无码人妻av大片色欲 | 欧美丰满老熟妇xxxxx性 | 亚洲精品综合一区二区三区在线 | 国产情侣作爱视频免费观看 | 亚洲一区二区三区 | 国产精品多人p群无码 | 纯爱无遮挡h肉动漫在线播放 | 欧美日韩一区二区综合 | 久久久无码中文字幕久... | 午夜理论片yy44880影院 | 日本熟妇乱子伦xxxx | 欧美日韩视频无码一区二区三 | 欧美熟妇另类久久久久久多毛 | 国产综合在线观看 | 国产精品免费大片 | 日韩精品乱码av一区二区 | 性生交大片免费看女人按摩摩 | 久久久久国色av免费观看性色 | 色五月丁香五月综合五月 | 国产明星裸体无码xxxx视频 | 中文字幕无码日韩专区 | 亚洲成a人片在线观看无码3d | 久久99精品久久久久久动态图 | 日韩欧美群交p片內射中文 | 极品尤物被啪到呻吟喷水 | 成人欧美一区二区三区 | 国产成人一区二区三区在线观看 | 国产性生大片免费观看性 | 97无码免费人妻超级碰碰夜夜 | 国产精品无码永久免费888 | 初尝人妻少妇中文字幕 | 国产麻豆精品一区二区三区v视界 | 久久国产精品精品国产色婷婷 | 中文字幕+乱码+中文字幕一区 | 午夜精品一区二区三区的区别 | 国内老熟妇对白xxxxhd | 国内精品久久久久久中文字幕 | 国产香蕉尹人视频在线 | 亚洲精品美女久久久久久久 | 欧美激情一区二区三区成人 | 东京一本一道一二三区 | 麻豆人妻少妇精品无码专区 | 欧美 丝袜 自拍 制服 另类 | 日韩精品久久久肉伦网站 | 人妻少妇被猛烈进入中文字幕 | 国产精品对白交换视频 | 香港三级日本三级妇三级 | 成人精品视频一区二区三区尤物 | 色五月五月丁香亚洲综合网 | 中文字幕无码av激情不卡 | 亚洲乱码日产精品bd | 欧美日韩视频无码一区二区三 | 国产在线精品一区二区三区直播 | 少妇被黑人到高潮喷出白浆 | 久久久久久av无码免费看大片 | 麻豆国产97在线 | 欧洲 | 亚洲综合无码久久精品综合 | 国产97在线 | 亚洲 | 高清国产亚洲精品自在久久 | 无码av免费一区二区三区试看 | 欧美日本精品一区二区三区 | 人妻人人添人妻人人爱 | 久久99精品久久久久久动态图 | 亚洲色欲色欲天天天www | 少妇的肉体aa片免费 | 精品一区二区不卡无码av | 国产电影无码午夜在线播放 | 久久人人爽人人爽人人片av高清 | 欧美性生交活xxxxxdddd | 婷婷六月久久综合丁香 | 国产精品久久精品三级 | 全黄性性激高免费视频 | 人人澡人人透人人爽 | 真人与拘做受免费视频 | 伊人久久大香线蕉亚洲 | 中文精品久久久久人妻不卡 | 噜噜噜亚洲色成人网站 | 蜜桃av抽搐高潮一区二区 | 国产香蕉尹人综合在线观看 | 成人试看120秒体验区 | 国产一区二区三区四区五区加勒比 | 67194成是人免费无码 | 国产亚洲人成a在线v网站 | 久久久久国色av免费观看性色 | 欧美freesex黑人又粗又大 | 欧美人与禽猛交狂配 | 成人免费视频视频在线观看 免费 | 久久国产精品二国产精品 | 久久99久久99精品中文字幕 | 久久人人97超碰a片精品 | 丰腴饱满的极品熟妇 | 思思久久99热只有频精品66 | 亚洲精品国产精品乱码视色 | а√资源新版在线天堂 | 国产精品鲁鲁鲁 | 天干天干啦夜天干天2017 | 午夜时刻免费入口 | 亚洲综合另类小说色区 | 亚洲精品中文字幕久久久久 | 久久亚洲中文字幕精品一区 | 欧美黑人巨大xxxxx | 日本www一道久久久免费榴莲 | 久久这里只有精品视频9 | 国产色精品久久人妻 | 亲嘴扒胸摸屁股激烈网站 | 久久人人爽人人爽人人片av高清 | 久久精品中文字幕大胸 | 国产精品久久久久9999小说 | 欧美一区二区三区视频在线观看 | 午夜精品一区二区三区的区别 | 丝袜美腿亚洲一区二区 | 日日麻批免费40分钟无码 | 真人与拘做受免费视频一 | 欧美自拍另类欧美综合图片区 | 国产成人一区二区三区在线观看 | 狠狠亚洲超碰狼人久久 | 3d动漫精品啪啪一区二区中 | 成年女人永久免费看片 | 2020久久香蕉国产线看观看 | 一个人看的www免费视频在线观看 | 伊人久久大香线蕉av一区二区 | 日韩人妻无码中文字幕视频 | 亚洲男人av天堂午夜在 | 日韩亚洲欧美中文高清在线 | 无遮无挡爽爽免费视频 | 7777奇米四色成人眼影 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 欧美黑人巨大xxxxx | 日韩少妇白浆无码系列 | 麻花豆传媒剧国产免费mv在线 | 久久综合激激的五月天 | 亚洲色欲色欲天天天www | 亚洲国产精品无码久久久久高潮 | 日韩人妻少妇一区二区三区 | 亚洲色大成网站www | 色五月五月丁香亚洲综合网 | 色婷婷欧美在线播放内射 | 国内少妇偷人精品视频 | 蜜桃无码一区二区三区 | 成 人 免费观看网站 | 成人免费视频一区二区 | 国内少妇偷人精品视频 | 六月丁香婷婷色狠狠久久 | 国产亚洲人成在线播放 | 国产超级va在线观看视频 | 九九综合va免费看 | 免费无码午夜福利片69 | 日韩精品无码一区二区中文字幕 | 高潮毛片无遮挡高清免费视频 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲日本va中文字幕 | 丁香啪啪综合成人亚洲 | 亚洲色大成网站www | 免费无码一区二区三区蜜桃大 | 国产av无码专区亚洲a∨毛片 | 少妇性俱乐部纵欲狂欢电影 | 秋霞特色aa大片 | 人妻尝试又大又粗久久 | 中文无码成人免费视频在线观看 | 99久久婷婷国产综合精品青草免费 | 好男人www社区 | 免费无码肉片在线观看 | 国产精品鲁鲁鲁 | 亚洲 高清 成人 动漫 | 国产婷婷色一区二区三区在线 | 久久久www成人免费毛片 | 国产美女精品一区二区三区 | 日韩精品久久久肉伦网站 | 国产亚洲tv在线观看 | 亚洲男人av天堂午夜在 | 国语精品一区二区三区 | 久在线观看福利视频 | 99久久精品无码一区二区毛片 | 大胆欧美熟妇xx | 国产情侣作爱视频免费观看 | 国产精品久久久久久亚洲毛片 | 无码毛片视频一区二区本码 | 亚洲aⅴ无码成人网站国产app | 婷婷丁香五月天综合东京热 | 麻花豆传媒剧国产免费mv在线 | 无遮挡国产高潮视频免费观看 | 男女下面进入的视频免费午夜 | 欧美丰满少妇xxxx性 | 欧美激情综合亚洲一二区 | 少女韩国电视剧在线观看完整 | 国产精品内射视频免费 | 秋霞成人午夜鲁丝一区二区三区 | 久久精品国产日本波多野结衣 | 伊人久久大香线蕉亚洲 | 人妻天天爽夜夜爽一区二区 | 中文字幕乱码亚洲无线三区 | 亚洲熟女一区二区三区 | 久久成人a毛片免费观看网站 | 又黄又爽又色的视频 | 成在人线av无码免观看麻豆 | 一个人看的www免费视频在线观看 | 国产无遮挡吃胸膜奶免费看 | 久久久精品国产sm最大网站 | 性生交大片免费看l | 国产办公室秘书无码精品99 | 国产人妻久久精品二区三区老狼 | 日韩av无码一区二区三区 | 初尝人妻少妇中文字幕 | 亚洲日韩乱码中文无码蜜桃臀网站 | 四虎国产精品一区二区 | www成人国产高清内射 | 久久精品丝袜高跟鞋 | 日日躁夜夜躁狠狠躁 | 乱码午夜-极国产极内射 | v一区无码内射国产 | 色综合久久中文娱乐网 | 桃花色综合影院 | 久青草影院在线观看国产 | 无码吃奶揉捏奶头高潮视频 | 性色欲网站人妻丰满中文久久不卡 | 蜜桃无码一区二区三区 | 国产一精品一av一免费 | 国产精品久久久久久亚洲影视内衣 | 男人的天堂2018无码 | 激情国产av做激情国产爱 | 无码精品国产va在线观看dvd | 狠狠色噜噜狠狠狠狠7777米奇 | 国产suv精品一区二区五 | 中文无码成人免费视频在线观看 | 女人被男人爽到呻吟的视频 | 国精产品一品二品国精品69xx | 亚洲午夜福利在线观看 | 国产免费久久精品国产传媒 | 精品久久久久久亚洲精品 | 老太婆性杂交欧美肥老太 | 成人性做爰aaa片免费看不忠 | 亚洲日韩乱码中文无码蜜桃臀网站 | 中文精品久久久久人妻不卡 | 无码吃奶揉捏奶头高潮视频 | 美女极度色诱视频国产 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲国产成人av在线观看 | 久久99精品国产.久久久久 | 噜噜噜亚洲色成人网站 | 蜜臀aⅴ国产精品久久久国产老师 | 娇妻被黑人粗大高潮白浆 | 亚洲国产精品一区二区第一页 | 国产情侣作爱视频免费观看 | 国产偷国产偷精品高清尤物 | 亚洲成色在线综合网站 | 精品日本一区二区三区在线观看 | 亚洲综合精品香蕉久久网 | 亚洲精品中文字幕 | 日日躁夜夜躁狠狠躁 | 久久精品女人天堂av免费观看 | 人人澡人人妻人人爽人人蜜桃 | 性开放的女人aaa片 | 在线播放亚洲第一字幕 | 国产成人无码av一区二区 | 久久人妻内射无码一区三区 | 日本大乳高潮视频在线观看 | 日日麻批免费40分钟无码 | 久久久久成人精品免费播放动漫 | 欧洲精品码一区二区三区免费看 | 成人一区二区免费视频 | 蜜臀aⅴ国产精品久久久国产老师 | 国产精品a成v人在线播放 | 99re在线播放 | 狠狠色色综合网站 | 精品一区二区三区无码免费视频 | 双乳奶水饱满少妇呻吟 | 久久久久国色av免费观看性色 | 日产精品99久久久久久 | 免费播放一区二区三区 | 成人女人看片免费视频放人 | 久久亚洲中文字幕精品一区 | 乱人伦中文视频在线观看 | 亚洲日韩一区二区三区 | 国产婷婷色一区二区三区在线 | 亚洲一区二区三区偷拍女厕 | 又湿又紧又大又爽a视频国产 | 又大又硬又爽免费视频 | 欧美色就是色 | 老太婆性杂交欧美肥老太 | 免费视频欧美无人区码 | 人妻少妇精品视频专区 | 日日橹狠狠爱欧美视频 | 亚洲熟妇自偷自拍另类 | 波多野结衣av一区二区全免费观看 | 狠狠色噜噜狠狠狠狠7777米奇 | 天堂亚洲2017在线观看 | 欧美日韩一区二区三区自拍 | 日本爽爽爽爽爽爽在线观看免 | 国产xxx69麻豆国语对白 | 自拍偷自拍亚洲精品被多人伦好爽 | 国产精品第一国产精品 | 午夜性刺激在线视频免费 | 亚洲小说图区综合在线 | 国产乱码精品一品二品 | 亚洲国产欧美在线成人 | 国产av人人夜夜澡人人爽麻豆 | 少妇无码av无码专区在线观看 | 美女毛片一区二区三区四区 | a国产一区二区免费入口 | 色五月丁香五月综合五月 | 亚洲 a v无 码免 费 成 人 a v | 亚洲爆乳精品无码一区二区三区 | 图片小说视频一区二区 | 性做久久久久久久免费看 | 狂野欧美激情性xxxx | 欧美激情内射喷水高潮 | 日韩精品无码一本二本三本色 | 亚洲精品久久久久久久久久久 | 精品无码国产自产拍在线观看蜜 | 国产人妻久久精品二区三区老狼 | 久久国产精品精品国产色婷婷 | 小鲜肉自慰网站xnxx | 在线精品亚洲一区二区 | 中文无码成人免费视频在线观看 | 久久久久成人片免费观看蜜芽 | 少妇无套内谢久久久久 | 国内少妇偷人精品视频免费 | 亚洲 另类 在线 欧美 制服 | 亚洲国精产品一二二线 | 激情爆乳一区二区三区 | av无码电影一区二区三区 | 黄网在线观看免费网站 | 久久综合色之久久综合 | 国产精品久免费的黄网站 | 精品一区二区三区无码免费视频 | 国内丰满熟女出轨videos | 黑人粗大猛烈进出高潮视频 | 中文字幕乱码亚洲无线三区 | 日日碰狠狠躁久久躁蜜桃 | 亚洲一区二区三区偷拍女厕 | 丝袜足控一区二区三区 | 色五月丁香五月综合五月 | 精品国产aⅴ无码一区二区 | 久久久精品国产sm最大网站 | 免费乱码人妻系列无码专区 | 亚洲欧美精品伊人久久 | 亚洲爆乳无码专区 | 中文毛片无遮挡高清免费 | 国产精品久久久久无码av色戒 | 精品国产一区av天美传媒 | 欧美激情内射喷水高潮 | 亚洲成a人片在线观看日本 | 国产无套内射久久久国产 | 国产精品亚洲一区二区三区喷水 | 一本一道久久综合久久 | 亚洲大尺度无码无码专区 | 精品人人妻人人澡人人爽人人 | 无码中文字幕色专区 | 欧美xxxx黑人又粗又长 | 亚洲欧美综合区丁香五月小说 | 综合人妻久久一区二区精品 | 人妻少妇被猛烈进入中文字幕 | 国模大胆一区二区三区 | 精品日本一区二区三区在线观看 | 久久综合色之久久综合 | 中文字幕日产无线码一区 | 欧美性猛交内射兽交老熟妇 | 一本大道伊人av久久综合 | 天天拍夜夜添久久精品大 | 俄罗斯老熟妇色xxxx | 久久精品国产日本波多野结衣 | 国产办公室秘书无码精品99 | 青青青手机频在线观看 | 水蜜桃色314在线观看 | 精品夜夜澡人妻无码av蜜桃 | 久久久久久国产精品无码下载 | 久久精品中文字幕一区 | 妺妺窝人体色www在线小说 | 日本大乳高潮视频在线观看 | 精品一二三区久久aaa片 | 天天爽夜夜爽夜夜爽 | 亚洲一区二区三区 | 伊人久久大香线蕉午夜 | 国产精品怡红院永久免费 | 亚洲国产欧美日韩精品一区二区三区 | 日日碰狠狠丁香久燥 | 日韩人妻无码中文字幕视频 | 麻豆精品国产精华精华液好用吗 | 婷婷丁香五月天综合东京热 | 麻豆av传媒蜜桃天美传媒 | 午夜无码人妻av大片色欲 | 波多野结衣乳巨码无在线观看 | 欧美人与禽zoz0性伦交 | 人妻天天爽夜夜爽一区二区 | 九九热爱视频精品 | 内射老妇bbwx0c0ck | 欧美丰满熟妇xxxx性ppx人交 | 天堂亚洲2017在线观看 | 亚洲色偷偷男人的天堂 | 亚洲 欧美 激情 小说 另类 | 亚洲乱亚洲乱妇50p | 成人动漫在线观看 | 夜精品a片一区二区三区无码白浆 | 色综合久久久无码网中文 | 国产真实夫妇视频 | 亚洲国产精品无码久久久久高潮 | 伦伦影院午夜理论片 | 婷婷丁香六月激情综合啪 | 中文字幕乱妇无码av在线 | 精品一区二区不卡无码av | 国产午夜视频在线观看 | 粉嫩少妇内射浓精videos | 麻豆av传媒蜜桃天美传媒 | 男女猛烈xx00免费视频试看 | 久久久精品欧美一区二区免费 | 欧美成人高清在线播放 | 精品偷拍一区二区三区在线看 | 乱人伦人妻中文字幕无码久久网 | 国精产品一品二品国精品69xx | 超碰97人人做人人爱少妇 | 任你躁在线精品免费 | 鲁大师影院在线观看 | 国产精品多人p群无码 | 未满小14洗澡无码视频网站 | 国产成人综合色在线观看网站 | 国产国语老龄妇女a片 | 国产乱人伦av在线无码 | 亚洲日本在线电影 | 亚洲欧美日韩国产精品一区二区 | 亚洲精品一区三区三区在线观看 | 精品亚洲成av人在线观看 | 大地资源网第二页免费观看 | 久久五月精品中文字幕 | 99久久99久久免费精品蜜桃 | 国产又爽又黄又刺激的视频 | 狂野欧美性猛xxxx乱大交 | 少妇人妻大乳在线视频 | 四十如虎的丰满熟妇啪啪 | 人妻有码中文字幕在线 | aa片在线观看视频在线播放 | 丝袜美腿亚洲一区二区 | 动漫av一区二区在线观看 | 免费播放一区二区三区 | 亚洲色无码一区二区三区 | 欧美 日韩 人妻 高清 中文 | 色综合久久久久综合一本到桃花网 | 日产国产精品亚洲系列 | 成人一在线视频日韩国产 | 国产真实伦对白全集 | 久久精品国产日本波多野结衣 | 国产精品亚洲а∨无码播放麻豆 | 精品国产一区二区三区四区在线看 | 无遮挡国产高潮视频免费观看 | 亚洲自偷自偷在线制服 | 国产精品永久免费视频 | 无码人中文字幕 | 高清不卡一区二区三区 | 欧美丰满熟妇xxxx性ppx人交 | 亚洲爆乳大丰满无码专区 | 国精产品一区二区三区 | 国产成人综合色在线观看网站 | 日韩av无码一区二区三区 | 精品人妻av区 | 国产精品毛片一区二区 | 精品国产乱码久久久久乱码 | 无码精品人妻一区二区三区av | 国产精品人妻一区二区三区四 | 中文字幕 亚洲精品 第1页 | 少妇愉情理伦片bd | 波多野结衣aⅴ在线 | 日韩欧美群交p片內射中文 | 白嫩日本少妇做爰 | 熟妇人妻无乱码中文字幕 | 亚洲乱码国产乱码精品精 | 鲁大师影院在线观看 | 人人澡人摸人人添 | 一本大道久久东京热无码av | 日日夜夜撸啊撸 | 国产精品美女久久久 | 18无码粉嫩小泬无套在线观看 | 偷窥日本少妇撒尿chinese | 亚洲欧美中文字幕5发布 | a在线亚洲男人的天堂 | 无码av免费一区二区三区试看 | 人人妻在人人 | 欧美乱妇无乱码大黄a片 | 国产午夜视频在线观看 | 99精品无人区乱码1区2区3区 | 国产人妖乱国产精品人妖 | 永久免费精品精品永久-夜色 | 国产激情艳情在线看视频 | 亚洲熟悉妇女xxx妇女av | 亚洲精品一区二区三区四区五区 | 亚洲成a人片在线观看无码3d | www一区二区www免费 | 亚洲国产成人av在线观看 | 色一情一乱一伦一区二区三欧美 | 久久久婷婷五月亚洲97号色 | 国产真实伦对白全集 | 国产在线无码精品电影网 | 中文字幕无码av波多野吉衣 | 国产精品久久久久影院嫩草 | 正在播放东北夫妻内射 | 亚洲小说春色综合另类 | av无码久久久久不卡免费网站 | 国产精品久久国产精品99 | 国产av无码专区亚洲a∨毛片 | 国产精品99爱免费视频 | 欧洲欧美人成视频在线 | 国产内射老熟女aaaa | 日韩人妻无码一区二区三区久久99 | 国产午夜福利亚洲第一 | 亚洲成色在线综合网站 | 亚洲中文无码av永久不收费 | a国产一区二区免费入口 | 粉嫩少妇内射浓精videos | 久久午夜无码鲁丝片午夜精品 | 狂野欧美激情性xxxx | 无码吃奶揉捏奶头高潮视频 | 97久久超碰中文字幕 | 亲嘴扒胸摸屁股激烈网站 | 人妻体内射精一区二区三四 | 伦伦影院午夜理论片 | 国产亚洲tv在线观看 | 久久综合给合久久狠狠狠97色 | 亚洲欧美精品aaaaaa片 | 人妻人人添人妻人人爱 | 国产精品高潮呻吟av久久4虎 | 午夜精品一区二区三区在线观看 | 特黄特色大片免费播放器图片 | 18禁黄网站男男禁片免费观看 | 荫蒂添的好舒服视频囗交 | 日韩欧美中文字幕在线三区 | 性生交大片免费看l | 中文字幕av伊人av无码av | 亚洲人成网站在线播放942 | 99视频精品全部免费免费观看 | 中文字幕无线码 | 久精品国产欧美亚洲色aⅴ大片 | 国产在热线精品视频 | 99久久亚洲精品无码毛片 | 成年女人永久免费看片 | 亚洲精品成人av在线 | 国产乱人伦av在线无码 | 国内综合精品午夜久久资源 | 丝袜足控一区二区三区 | 国产三级精品三级男人的天堂 | 精品午夜福利在线观看 | 欧美性黑人极品hd | 国产精品自产拍在线观看 | 国产无遮挡吃胸膜奶免费看 | 欧美xxxx黑人又粗又长 | 精品久久综合1区2区3区激情 | 人妻少妇精品无码专区动漫 | 97无码免费人妻超级碰碰夜夜 | 精品厕所偷拍各类美女tp嘘嘘 | 亚洲午夜福利在线观看 | 伦伦影院午夜理论片 | 青青青爽视频在线观看 | 人妻体内射精一区二区三四 | 中文字幕日韩精品一区二区三区 | 国产人妻大战黑人第1集 | 久久精品中文字幕一区 | 久久亚洲精品成人无码 | 精品一区二区不卡无码av | 欧美性生交活xxxxxdddd | 亚洲の无码国产の无码影院 | 国产精品理论片在线观看 | 99在线 | 亚洲 | 欧美成人免费全部网站 | 亚洲精品美女久久久久久久 | 国产农村妇女高潮大叫 | 丰满少妇高潮惨叫视频 | 亚洲七七久久桃花影院 | 国产亚洲精品精品国产亚洲综合 | 大肉大捧一进一出视频出来呀 | а√资源新版在线天堂 | 97夜夜澡人人双人人人喊 | 国产香蕉尹人综合在线观看 | 中国大陆精品视频xxxx | 男女性色大片免费网站 | 国产另类ts人妖一区二区 | 无码国内精品人妻少妇 | 国产无遮挡又黄又爽免费视频 | 亚洲成av人综合在线观看 | 美女毛片一区二区三区四区 | 色诱久久久久综合网ywww | 国内精品人妻无码久久久影院 | 牲欲强的熟妇农村老妇女 | 国产乱人无码伦av在线a | 双乳奶水饱满少妇呻吟 | а√资源新版在线天堂 | 俄罗斯老熟妇色xxxx | 色综合久久久无码中文字幕 | 久久久久国色av免费观看性色 | 色婷婷香蕉在线一区二区 | 日本www一道久久久免费榴莲 | 欧美人妻一区二区三区 | 国产精品久久久久无码av色戒 | 日本www一道久久久免费榴莲 | 国内老熟妇对白xxxxhd | 亚洲国产高清在线观看视频 | 精品无人国产偷自产在线 | 久久99精品久久久久婷婷 | 久久99国产综合精品 | 久久午夜无码鲁丝片午夜精品 | 欧美野外疯狂做受xxxx高潮 | 九一九色国产 | 国产精品爱久久久久久久 | 国产精品久久久 | 国产一区二区三区影院 | 欧美人妻一区二区三区 | 婷婷六月久久综合丁香 | 午夜理论片yy44880影院 | 亚洲欧美日韩国产精品一区二区 | 国内精品九九久久久精品 | 精品熟女少妇av免费观看 | 久久综合色之久久综合 | 久久99热只有频精品8 | 国产97在线 | 亚洲 | 人人妻人人澡人人爽人人精品浪潮 | 国产乱码精品一品二品 | 国产日产欧产精品精品app | 玩弄少妇高潮ⅹxxxyw | 夜夜影院未满十八勿进 | 亚洲中文字幕无码中字 | 国产成人久久精品流白浆 | 亚洲熟悉妇女xxx妇女av | 中文字幕人妻丝袜二区 | 国产人妻人伦精品 | 亚洲精品国产精品乱码视色 | 无码中文字幕色专区 | 在教室伦流澡到高潮hnp视频 | 精品无码国产自产拍在线观看蜜 | 欧美丰满熟妇xxxx性ppx人交 | 久久精品中文字幕大胸 | 成人精品天堂一区二区三区 | 日韩亚洲欧美中文高清在线 | 玩弄中年熟妇正在播放 | 偷窥日本少妇撒尿chinese | 丰腴饱满的极品熟妇 | 黑人粗大猛烈进出高潮视频 | 日韩欧美成人免费观看 | 噜噜噜亚洲色成人网站 | 狠狠综合久久久久综合网 | 久久久精品国产sm最大网站 | 爆乳一区二区三区无码 | 国产亚洲人成a在线v网站 | 亚洲国产精品久久久久久 | 国产成人无码一二三区视频 | 国产乱子伦视频在线播放 | 自拍偷自拍亚洲精品被多人伦好爽 | 亚洲色欲色欲欲www在线 | 国产精品久久久久7777 | 图片小说视频一区二区 | 中文字幕人妻无码一夲道 | 奇米影视7777久久精品人人爽 | 成人免费视频一区二区 | 成人无码视频在线观看网站 | 国产人妻精品一区二区三区 | 精品水蜜桃久久久久久久 | 人妻夜夜爽天天爽三区 | 学生妹亚洲一区二区 | 国产精品内射视频免费 | 精品夜夜澡人妻无码av蜜桃 | 久久99精品久久久久婷婷 | 国产明星裸体无码xxxx视频 | 精品厕所偷拍各类美女tp嘘嘘 | 欧美 日韩 人妻 高清 中文 | 日本乱偷人妻中文字幕 | 精品人妻中文字幕有码在线 | 蜜桃无码一区二区三区 | 两性色午夜视频免费播放 | 丰满人妻精品国产99aⅴ | 在线播放亚洲第一字幕 | 日韩精品无码一区二区中文字幕 | aⅴ在线视频男人的天堂 | 少妇太爽了在线观看 | 午夜性刺激在线视频免费 | 亚洲中文字幕无码中字 | 久久久久久九九精品久 | 亚洲国产精品久久久久久 | 亚洲成a人片在线观看无码3d | 日日天日日夜日日摸 | 欧美激情综合亚洲一二区 | 久久亚洲精品中文字幕无男同 | 国产精品毛多多水多 | 日韩 欧美 动漫 国产 制服 | 丝袜 中出 制服 人妻 美腿 | 99久久婷婷国产综合精品青草免费 | www国产亚洲精品久久久日本 | 激情内射亚州一区二区三区爱妻 | 成人毛片一区二区 | 一区二区传媒有限公司 | 国产精品亚洲а∨无码播放麻豆 | 麻豆果冻传媒2021精品传媒一区下载 | 午夜不卡av免费 一本久久a久久精品vr综合 | 国产又粗又硬又大爽黄老大爷视 | 国产在热线精品视频 | 美女黄网站人色视频免费国产 | av在线亚洲欧洲日产一区二区 | 正在播放老肥熟妇露脸 | 天堂а√在线中文在线 | 中文亚洲成a人片在线观看 | 免费观看又污又黄的网站 | 2019午夜福利不卡片在线 | av无码电影一区二区三区 | 丰满少妇高潮惨叫视频 | 亚洲人成网站色7799 | 免费无码一区二区三区蜜桃大 | 中文字幕av日韩精品一区二区 | 日韩少妇内射免费播放 | 在线天堂新版最新版在线8 | 中文字幕无码av激情不卡 | 无套内谢老熟女 | 亚洲乱码中文字幕在线 | 性生交大片免费看l | 国产真人无遮挡作爱免费视频 | 激情内射亚州一区二区三区爱妻 | 最新版天堂资源中文官网 | 麻花豆传媒剧国产免费mv在线 | 国产欧美精品一区二区三区 | 综合网日日天干夜夜久久 | 人妻有码中文字幕在线 | 国产午夜福利亚洲第一 | 国产精品二区一区二区aⅴ污介绍 | www成人国产高清内射 | 国产婷婷色一区二区三区在线 | 国产真实夫妇视频 | www国产亚洲精品久久网站 | 亚洲综合另类小说色区 | 国产手机在线αⅴ片无码观看 | 精品成人av一区二区三区 | 亚洲综合在线一区二区三区 | 亚洲日本va午夜在线电影 | 国产亲子乱弄免费视频 | 又色又爽又黄的美女裸体网站 | 青春草在线视频免费观看 | 亚洲国产精华液网站w | 无码免费一区二区三区 | 亚洲人成网站色7799 | 377p欧洲日本亚洲大胆 | 少妇高潮一区二区三区99 | 天天躁夜夜躁狠狠是什么心态 | 帮老师解开蕾丝奶罩吸乳网站 | 婷婷丁香五月天综合东京热 | 欧美老妇交乱视频在线观看 | 欧美高清在线精品一区 | 一区二区三区乱码在线 | 欧洲 | 巨爆乳无码视频在线观看 | 7777奇米四色成人眼影 | 成在人线av无码免费 | 国产xxx69麻豆国语对白 | 久久精品国产99精品亚洲 | 人人澡人人透人人爽 | 日日干夜夜干 | 呦交小u女精品视频 | 国产av无码专区亚洲awww | 欧美人与禽zoz0性伦交 | 波多野结衣乳巨码无在线观看 | 精品无码国产自产拍在线观看蜜 | 无码国产乱人伦偷精品视频 | 日本高清一区免费中文视频 | 麻花豆传媒剧国产免费mv在线 | 亚洲人成网站色7799 | 国产精品a成v人在线播放 | 人人妻人人澡人人爽人人精品浪潮 | 久久综合九色综合欧美狠狠 | 国产亚洲视频中文字幕97精品 | 色狠狠av一区二区三区 | 粉嫩少妇内射浓精videos | 国产精品久久久久9999小说 | 久久久婷婷五月亚洲97号色 | 午夜精品一区二区三区在线观看 | 国色天香社区在线视频 | 日韩欧美群交p片內射中文 | 男人的天堂2018无码 | 人妻少妇精品无码专区二区 | 扒开双腿吃奶呻吟做受视频 | 99久久久无码国产aaa精品 | 一区二区三区乱码在线 | 欧洲 | 牛和人交xxxx欧美 | 西西人体www44rt大胆高清 | 在线播放亚洲第一字幕 | 精品人妻人人做人人爽夜夜爽 | 狠狠色色综合网站 | 日韩视频 中文字幕 视频一区 | 青草青草久热国产精品 | 综合激情五月综合激情五月激情1 | 青青青手机频在线观看 | 中文字幕乱码亚洲无线三区 | 曰本女人与公拘交酡免费视频 | 亚洲 欧美 激情 小说 另类 | 综合人妻久久一区二区精品 | 一区二区传媒有限公司 | 性欧美疯狂xxxxbbbb | 美女毛片一区二区三区四区 | 蜜桃视频插满18在线观看 | 高清国产亚洲精品自在久久 | 成人精品天堂一区二区三区 | 欧美高清在线精品一区 | 国产sm调教视频在线观看 | 国产成人精品三级麻豆 | 日本护士xxxxhd少妇 | 大屁股大乳丰满人妻 | 青草青草久热国产精品 | 亚洲爆乳大丰满无码专区 | 无码午夜成人1000部免费视频 | 色欲av亚洲一区无码少妇 | 国产手机在线αⅴ片无码观看 | 亚洲人成网站在线播放942 | 人妻少妇精品无码专区二区 | 久久99精品久久久久久 | 中文字幕人妻无码一区二区三区 | 国产精品久久精品三级 | 中文字幕乱码人妻无码久久 | 丰满妇女强制高潮18xxxx | 亚洲日本在线电影 | 中文亚洲成a人片在线观看 | 欧美三级a做爰在线观看 | 少妇性俱乐部纵欲狂欢电影 | 丰满人妻被黑人猛烈进入 | 成人一在线视频日韩国产 | 色综合久久久无码中文字幕 | 久久婷婷五月综合色国产香蕉 | 久热国产vs视频在线观看 | 99精品国产综合久久久久五月天 | 99国产欧美久久久精品 | 熟妇人妻激情偷爽文 | 久热国产vs视频在线观看 | 免费乱码人妻系列无码专区 | 久久久中文字幕日本无吗 | 中文字幕色婷婷在线视频 | 思思久久99热只有频精品66 | 性色欲网站人妻丰满中文久久不卡 | 欧美三级a做爰在线观看 | 久久亚洲中文字幕无码 | www国产亚洲精品久久网站 | 国产一区二区三区日韩精品 | 亚洲色无码一区二区三区 | 免费无码午夜福利片69 | 国产综合在线观看 | 国产一区二区三区四区五区加勒比 | 亚洲自偷自偷在线制服 | 色婷婷久久一区二区三区麻豆 | 少妇被粗大的猛进出69影院 | 久久久精品国产sm最大网站 | 久久综合激激的五月天 | 黑人巨大精品欧美黑寡妇 | 九九在线中文字幕无码 | 国产精品二区一区二区aⅴ污介绍 | 欧美老妇与禽交 | 色一情一乱一伦一区二区三欧美 | 亚洲熟妇色xxxxx亚洲 | 天天躁日日躁狠狠躁免费麻豆 | 久久人妻内射无码一区三区 | 国产又爽又黄又刺激的视频 | 亚欧洲精品在线视频免费观看 | 久久亚洲中文字幕精品一区 | 色欲综合久久中文字幕网 | 97资源共享在线视频 | 亚洲中文字幕无码一久久区 | 帮老师解开蕾丝奶罩吸乳网站 | 日本熟妇人妻xxxxx人hd | 人人妻人人澡人人爽人人精品浪潮 | 精品一区二区不卡无码av | 狠狠色噜噜狠狠狠狠7777米奇 | 天干天干啦夜天干天2017 | 人妻少妇精品无码专区二区 | 日韩av无码一区二区三区不卡 | 白嫩日本少妇做爰 | 99精品无人区乱码1区2区3区 | 性欧美疯狂xxxxbbbb | 亚洲娇小与黑人巨大交 | 精品无码av一区二区三区 | 亚洲一区二区三区 | 久久精品中文字幕一区 | 内射巨臀欧美在线视频 | 俄罗斯老熟妇色xxxx | 亚洲欧美色中文字幕在线 | 国产成人久久精品流白浆 | 国产成人精品视频ⅴa片软件竹菊 | 国产 精品 自在自线 | 未满成年国产在线观看 | 国产成人综合美国十次 | 强伦人妻一区二区三区视频18 | 亚洲精品一区二区三区在线观看 | 人人妻人人澡人人爽精品欧美 | 亚洲日韩av片在线观看 | 亚洲成a人片在线观看日本 | 未满小14洗澡无码视频网站 | 在线 国产 欧美 亚洲 天堂 | 午夜丰满少妇性开放视频 | 未满成年国产在线观看 | 天堂а√在线地址中文在线 | 日韩 欧美 动漫 国产 制服 | 漂亮人妻洗澡被公强 日日躁 | 中文字幕人妻无码一区二区三区 | 丰满人妻一区二区三区免费视频 | 国产高清不卡无码视频 | av人摸人人人澡人人超碰下载 | 99er热精品视频 | 99麻豆久久久国产精品免费 | 欧美丰满熟妇xxxx性ppx人交 | 中文字幕乱码中文乱码51精品 | 老太婆性杂交欧美肥老太 | 99久久久无码国产aaa精品 | 亚洲国产精品一区二区美利坚 | 中文字幕乱码人妻无码久久 | 中文字幕乱码中文乱码51精品 | 无码免费一区二区三区 | 久久精品无码一区二区三区 | 久久www免费人成人片 | 人人爽人人澡人人高潮 | 亚洲日韩精品欧美一区二区 | 免费无码肉片在线观看 | 国产黑色丝袜在线播放 | 国产亚洲精品久久久闺蜜 | 国内综合精品午夜久久资源 | 国产美女精品一区二区三区 | 88国产精品欧美一区二区三区 | 亚洲国产欧美在线成人 | 亚洲一区二区三区四区 | 无码成人精品区在线观看 | 亚洲国产精华液网站w | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 久久午夜无码鲁丝片 | 性欧美熟妇videofreesex | 亚洲欧美综合区丁香五月小说 | 日韩精品一区二区av在线 | 久久亚洲精品成人无码 | 亚洲国产成人a精品不卡在线 | 全黄性性激高免费视频 | 娇妻被黑人粗大高潮白浆 | 老熟女乱子伦 | 性色欲网站人妻丰满中文久久不卡 | 国产又粗又硬又大爽黄老大爷视 | 5858s亚洲色大成网站www | 国产成人午夜福利在线播放 | 精品国产一区二区三区四区在线看 | 麻豆果冻传媒2021精品传媒一区下载 | 三级4级全黄60分钟 | 呦交小u女精品视频 | 天天摸天天透天天添 | 丁香啪啪综合成人亚洲 | 免费无码肉片在线观看 | 亚洲精品国产第一综合99久久 | 国产偷国产偷精品高清尤物 | 久久国产36精品色熟妇 | 色婷婷综合激情综在线播放 | 国产精品亚洲а∨无码播放麻豆 | 色老头在线一区二区三区 | 蜜桃视频插满18在线观看 | 久久久久国色av免费观看性色 | 7777奇米四色成人眼影 | 亚洲精品国产精品乱码视色 | 高清无码午夜福利视频 | 综合网日日天干夜夜久久 | 精品人妻人人做人人爽 | 欧美日韩一区二区综合 | 免费人成网站视频在线观看 | 亚洲精品一区二区三区婷婷月 | 欧美精品在线观看 | 亚洲爆乳大丰满无码专区 | 久久精品国产99久久6动漫 | 兔费看少妇性l交大片免费 | 色噜噜亚洲男人的天堂 | 99久久久无码国产aaa精品 | аⅴ资源天堂资源库在线 | 亚洲精品一区二区三区四区五区 | 波多野结衣av一区二区全免费观看 | 国产亚洲视频中文字幕97精品 | 婷婷丁香六月激情综合啪 | 动漫av网站免费观看 | 377p欧洲日本亚洲大胆 | 精品成在人线av无码免费看 | 中文字幕无码日韩欧毛 | 国精品人妻无码一区二区三区蜜柚 | 亚洲第一无码av无码专区 | 丰腴饱满的极品熟妇 | 成人三级无码视频在线观看 | 国产人妻精品午夜福利免费 | 免费中文字幕日韩欧美 | 在线观看国产一区二区三区 | 国产人妻大战黑人第1集 | 好爽又高潮了毛片免费下载 | 熟妇人妻无码xxx视频 | 性欧美大战久久久久久久 | 国产精品igao视频网 | 久久综合狠狠综合久久综合88 | 成人亚洲精品久久久久软件 | 99视频精品全部免费免费观看 | 国产精品无码一区二区三区不卡 | 亚洲码国产精品高潮在线 | 樱花草在线播放免费中文 | 水蜜桃色314在线观看 | 国产人妻精品一区二区三区不卡 | 思思久久99热只有频精品66 | 日韩少妇白浆无码系列 | 麻豆国产丝袜白领秘书在线观看 | 好男人社区资源 | 欧美人与牲动交xxxx | 激情人妻另类人妻伦 | 亚洲欧美日韩国产精品一区二区 | 成人动漫在线观看 | 亚洲综合色区中文字幕 | 在线播放免费人成毛片乱码 | 国产精品高潮呻吟av久久 | 亚洲人成影院在线观看 | 久久久久人妻一区精品色欧美 | 日本精品少妇一区二区三区 | 激情内射日本一区二区三区 | 老熟妇乱子伦牲交视频 | 人妻尝试又大又粗久久 | 初尝人妻少妇中文字幕 | 亚洲成在人网站无码天堂 | 桃花色综合影院 | 美女张开腿让人桶 | 亚洲精品www久久久 | 久久久亚洲欧洲日产国码αv | a国产一区二区免费入口 | 亚洲va欧美va天堂v国产综合 | 国产va免费精品观看 | 夜先锋av资源网站 | 福利一区二区三区视频在线观看 | 国产两女互慰高潮视频在线观看 | 国产凸凹视频一区二区 | 人人妻人人澡人人爽精品欧美 | 2019nv天堂香蕉在线观看 | 国产熟妇另类久久久久 | 精品人妻中文字幕有码在线 | 亚洲中文无码av永久不收费 | 亚洲国产精品美女久久久久 | 亚洲精品国偷拍自产在线麻豆 | 国产两女互慰高潮视频在线观看 | 国产莉萝无码av在线播放 | 国产精品亚洲综合色区韩国 | 国产明星裸体无码xxxx视频 | 97色伦图片97综合影院 | 国产香蕉97碰碰久久人人 | 国产无遮挡吃胸膜奶免费看 | 综合激情五月综合激情五月激情1 | 草草网站影院白丝内射 | 日本大香伊一区二区三区 | 国产精品第一国产精品 | 人妻少妇精品无码专区动漫 | 丰满肥臀大屁股熟妇激情视频 | 国产午夜无码精品免费看 | 国产真实伦对白全集 | 激情国产av做激情国产爱 | 国产精品免费大片 | 久久亚洲日韩精品一区二区三区 | 黄网在线观看免费网站 | 国产特级毛片aaaaaa高潮流水 | 亚洲综合另类小说色区 | 午夜无码区在线观看 | 久久久精品欧美一区二区免费 | 美女毛片一区二区三区四区 | 最近中文2019字幕第二页 | 捆绑白丝粉色jk震动捧喷白浆 | 人妻aⅴ无码一区二区三区 | 国产成人精品久久亚洲高清不卡 | 国产激情精品一区二区三区 | 亚洲色欲色欲天天天www | av无码不卡在线观看免费 | 精品成在人线av无码免费看 | 性色欲网站人妻丰满中文久久不卡 | 午夜福利一区二区三区在线观看 | 精品日本一区二区三区在线观看 | 熟妇人妻激情偷爽文 | 在线视频网站www色 | 乱人伦中文视频在线观看 | 亚洲人成网站色7799 | 亚洲一区二区三区国产精华液 | 网友自拍区视频精品 | 精品一区二区三区波多野结衣 | 波多野结衣乳巨码无在线观看 | 欧美高清在线精品一区 | √8天堂资源地址中文在线 | 人妻夜夜爽天天爽三区 | 欧美肥老太牲交大战 | av无码电影一区二区三区 | 波多野结衣av一区二区全免费观看 | 午夜理论片yy44880影院 | 日本一卡二卡不卡视频查询 | 少妇愉情理伦片bd | a国产一区二区免费入口 | 国产精品无码一区二区三区不卡 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产麻豆精品精东影业av网站 | 久久久婷婷五月亚洲97号色 | 亚洲aⅴ无码成人网站国产app | 国产成人一区二区三区别 | 麻豆av传媒蜜桃天美传媒 | 娇妻被黑人粗大高潮白浆 | 日韩无码专区 | 亚洲码国产精品高潮在线 | 丰满少妇人妻久久久久久 | 中文无码成人免费视频在线观看 | 天下第一社区视频www日本 | 精品成人av一区二区三区 | 久久久亚洲欧洲日产国码αv | 国产av无码专区亚洲awww | 亚洲色在线无码国产精品不卡 | 亚洲日本va中文字幕 | 国产午夜亚洲精品不卡下载 | 免费视频欧美无人区码 | 久久亚洲精品成人无码 | 国内丰满熟女出轨videos | 久久无码中文字幕免费影院蜜桃 | 亚洲第一无码av无码专区 | 亚洲综合无码一区二区三区 | 99久久无码一区人妻 | 99久久精品日本一区二区免费 | 亚洲а∨天堂久久精品2021 | 岛国片人妻三上悠亚 | 又湿又紧又大又爽a视频国产 | 1000部啪啪未满十八勿入下载 | 中文字幕人妻无码一区二区三区 | 国精品人妻无码一区二区三区蜜柚 | 免费看男女做好爽好硬视频 | 99国产精品白浆在线观看免费 | 18精品久久久无码午夜福利 | 久久久久99精品国产片 | 国产后入清纯学生妹 | 国産精品久久久久久久 | 久久久久国色av免费观看性色 | 丰满人妻被黑人猛烈进入 | 日韩 欧美 动漫 国产 制服 | 国产精品成人av在线观看 | 久久精品国产99久久6动漫 | 999久久久国产精品消防器材 | 国产亚洲欧美在线专区 | 欧美成人午夜精品久久久 | 精品aⅴ一区二区三区 | 国产人妻人伦精品1国产丝袜 | 国产办公室秘书无码精品99 | 久久精品国产一区二区三区 | 欧美亚洲国产一区二区三区 | 亚洲成色在线综合网站 | 国产乡下妇女做爰 | 天堂一区人妻无码 | 未满成年国产在线观看 | 一本久久a久久精品亚洲 | 国产成人久久精品流白浆 | 国产性生交xxxxx无码 | 少妇厨房愉情理9仑片视频 | 1000部啪啪未满十八勿入下载 | 131美女爱做视频 | 久久午夜无码鲁丝片午夜精品 | 玩弄少妇高潮ⅹxxxyw | 久久国产精品精品国产色婷婷 | 欧美日韩一区二区免费视频 | 亚洲の无码国产の无码步美 | 国产在线精品一区二区高清不卡 | 久久久久99精品国产片 | 久久无码人妻影院 | 永久黄网站色视频免费直播 | 亚洲国产av精品一区二区蜜芽 | 一本无码人妻在中文字幕免费 | 曰本女人与公拘交酡免费视频 | 国产午夜无码视频在线观看 | 国产人妻久久精品二区三区老狼 | 男女超爽视频免费播放 | 精品无码国产一区二区三区av | 欧美日韩一区二区三区自拍 | av无码不卡在线观看免费 | 亚洲综合色区中文字幕 | 久久99精品国产麻豆 | 精品国产一区av天美传媒 | 日本护士毛茸茸高潮 | 美女张开腿让人桶 | 日日摸日日碰夜夜爽av | 久久久久久国产精品无码下载 | 中文字幕 亚洲精品 第1页 | 日本一区二区三区免费播放 | 色一情一乱一伦 | 熟妇人妻无码xxx视频 | 亚洲男人av天堂午夜在 | 激情综合激情五月俺也去 | 国产三级精品三级男人的天堂 | 精品国产麻豆免费人成网站 | 精品无码av一区二区三区 | 国产suv精品一区二区五 | 午夜成人1000部免费视频 | 一本久道久久综合婷婷五月 | 国产色视频一区二区三区 | 99久久人妻精品免费一区 | 亚洲 另类 在线 欧美 制服 | 领导边摸边吃奶边做爽在线观看 | 波多野结衣aⅴ在线 | 波多野结衣一区二区三区av免费 | 久久人人爽人人人人片 | 国产 精品 自在自线 | 中文字幕乱码人妻无码久久 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 精品人人妻人人澡人人爽人人 | 999久久久国产精品消防器材 | 亚洲成av人在线观看网址 | 成人亚洲精品久久久久 | 成人免费视频视频在线观看 免费 | 亚洲爆乳无码专区 | 中文精品无码中文字幕无码专区 | 最新国产乱人伦偷精品免费网站 | 国产成人精品视频ⅴa片软件竹菊 | 免费无码一区二区三区蜜桃大 | 亚洲精品国偷拍自产在线麻豆 | 国产精品无码mv在线观看 | 啦啦啦www在线观看免费视频 | 欧美zoozzooz性欧美 | 性欧美熟妇videofreesex | 欧美午夜特黄aaaaaa片 | 国产综合久久久久鬼色 | 国产欧美亚洲精品a | 日韩亚洲欧美中文高清在线 | 国产成人无码专区 | 久久综合九色综合欧美狠狠 | 撕开奶罩揉吮奶头视频 | 日韩人妻系列无码专区 | 欧美黑人巨大xxxxx | 成人综合网亚洲伊人 | 欧美xxxx黑人又粗又长 | 纯爱无遮挡h肉动漫在线播放 | 亚洲色欲久久久综合网东京热 | 欧美人与禽zoz0性伦交 | 亚洲另类伦春色综合小说 | 国产精品国产三级国产专播 | 国产精品久久久久影院嫩草 | 欧美35页视频在线观看 | 国内精品人妻无码久久久影院蜜桃 | 亚洲自偷自偷在线制服 | 中文字幕av伊人av无码av | 欧美丰满少妇xxxx性 | 丰满人妻一区二区三区免费视频 | 国产成人无码一二三区视频 | 亚洲男女内射在线播放 | 亚洲精品一区二区三区四区五区 | 国精产品一品二品国精品69xx | 欧美黑人性暴力猛交喷水 | 国内揄拍国内精品少妇国语 | 成人影院yy111111在线观看 | 国产明星裸体无码xxxx视频 | 日韩精品一区二区av在线 | 国产偷国产偷精品高清尤物 | 久久精品国产精品国产精品污 | 国产精品美女久久久网av | 久久久久久亚洲精品a片成人 | 国产suv精品一区二区五 | 国内综合精品午夜久久资源 | 久久国产精品精品国产色婷婷 | 人人妻人人澡人人爽人人精品浪潮 | 97无码免费人妻超级碰碰夜夜 | 精品国产一区二区三区四区 | 国产99久久精品一区二区 | 中文字幕无码视频专区 | 国产精品手机免费 | 亚洲乱码日产精品bd | 在线欧美精品一区二区三区 | 青草青草久热国产精品 | 亚洲欧洲日本综合aⅴ在线 | 扒开双腿疯狂进出爽爽爽视频 | 久久精品国产99久久6动漫 | 国产成人无码一二三区视频 | av人摸人人人澡人人超碰下载 | 欧美性生交活xxxxxdddd | 久久99久久99精品中文字幕 | 在线视频网站www色 | 无码任你躁久久久久久久 | 日韩亚洲欧美中文高清在线 | 亚洲国产一区二区三区在线观看 | 精品国产麻豆免费人成网站 | 亚洲va中文字幕无码久久不卡 | 久久久久久久久蜜桃 | 国产性生大片免费观看性 | 装睡被陌生人摸出水好爽 | 国产一区二区三区精品视频 | 妺妺窝人体色www婷婷 | 爆乳一区二区三区无码 | 国产成人一区二区三区别 | 美女黄网站人色视频免费国产 | 精品无码国产自产拍在线观看蜜 | 国产免费久久久久久无码 | 国产激情无码一区二区 | 无码人妻久久一区二区三区不卡 | 少妇被黑人到高潮喷出白浆 | 亚洲国产av精品一区二区蜜芽 | 亚洲毛片av日韩av无码 | 丰腴饱满的极品熟妇 | 狠狠躁日日躁夜夜躁2020 |