植物三维模型快速重建
下面截取部分內(nèi)容加以闡述:
摘要:隨著人工智能技術(shù)、智慧農(nóng)業(yè)和虛擬現(xiàn)實技術(shù)等信息技術(shù)的快速發(fā)展和攝像器材的廣泛普及,三維模型重建工作越來越普遍,如何開發(fā)面向植物的簡易三維模型重建流程已受到普遍關(guān)注。本研究通過文獻(xiàn)研究法和實證研究法,實現(xiàn)了攝像機的自標(biāo)定過程,基于機器學(xué)習(xí)和SVM理論,實現(xiàn)了交互式彩色圖像分割模式并與原有的顏色閾值分割法進(jìn)行了對比,構(gòu)建了針對植物三維模型的基于單目視覺的運動恢復(fù)結(jié)構(gòu)流程,并以蘭花為例進(jìn)行了重建。結(jié)果表明:(1)SVM圖像分割理論更適合背景復(fù)雜的植物圖形和批量處理,顏色閾值分割法在背景單一的情況下能取得良好效果;(2)BRISK立體匹配算法的匹配效率更高且更具有魯棒性;(3)基于單目視覺的SfM法能較好地還原植物三維信息。
關(guān)鍵詞:三維重建;植物;SVM圖像分割;單目視覺
廢話不多說,這個項目說到底其實就是一個針對激光建模方案的替代方案,由于手持式激光建模儀器太過于昂貴,除非實驗必要,大部分有真正需求的人,反而無法接受其高昂的價格。所以在結(jié)合我的導(dǎo)師的建議和我自身興趣的前提下,我查閱了大量資料,文獻(xiàn),設(shè)計出了這一款,能夠?qū)崿F(xiàn)植物三維模型快速重建的小程序,分享出來,以便提供大家參考。
上圖所示就是這個程序的一個小功能,主要是利用支持向量機原理,將圖像精準(zhǔn)分割。
下圖所示,是這個項目的流程設(shè)計圖。
下圖是,項目所做的一些成果
參考文獻(xiàn)
[1] 章毓晉.圖像工程,第三版(合訂本).北京:清華大學(xué)出版社,2013
[2] Witkin A P. Recovering surface shape and orientation from texture[J]. Artificial intelligence, 1981, 17(1-3): 17-45.
[3] Wiley W C, McLaren I H. Time‐of‐flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26(12): 1150-1157.
[4] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical engineering, 1980, 19(1): 191139-191139-.
[5] Wiese D R. Laser Triangulation Sensors[J]. Quality, 1989, 28(1): 46.
[6] Aloimonos J. Shape from texture[J]. Biological cybernetics, 1988, 58(5): 345-360.
[7] Horn B K P. Shape from shading: A method for obtaining the shape of a smooth opaque object from one view[J]. 1970.
[8] Barnard S T, Thompson W B. Disparity analysis of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980 (4): 333-340.
[9] Marr D, Poggio T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1979, 204(1156): 301-328.
[10] Barrow H G, Tenenbaum J M. Computer vision systems[J]. Computer vision systems, 1978, 2.
[11] Barnard S T, Fischler M A. Computational stereo[J]. ACM Computing Surveys (CSUR), 1982, 14(4): 553-572.
[12] Dhond U R, Aggarwal J K. Structure from stereo-a review[J]. IEEE transactions on systems, man, and cybernetics, 1989, 19(6): 1489-1510.
[13] ladys law Skarbek W, Koschan A. Colour image segmentation a survey[J]. IEEE Transaction son circuits and systems for Video Tecknology, 1994, 14(7).
[14] Seitz S M, Curless B, Diebel J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]. IEEE, 2006, Vol 1: 519-528.
[15] 雷成, 胡占義, 吳福朝. 一種新的基于 Kruppa 方程的攝像機自標(biāo)定方法[J]. 計算機學(xué)報, 2003, 26(5): 587-597.
[16] Zhong Y, Zhang H. Control points based semi-dense matching[C]//Proceedings of the 5th Asian Conference on Computer Vision. Melbourne, Australia, 2002, 144.
[17] 謝路生, 王磊, 出曉嵐, 等. 基于 SfS 的 3D 視覺測量研究[J]. 2009.
[18] 李秀智, 張廣軍. 一種基于邊緣線的三目立體匹配方法[J]. 光電工程, 2007, 34(3): 22-26.
[19] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge university press, 2003.
[20] Bouguet, J. Y. "Camera Calibration Toolbox for Matlab."Computational Vision at the California Institute of Technology.
[21] Zhang, Z. "A Flexible New Technique for Camera Calibration."IEEE Transactions on Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–1334.
[22] Heikkila, J., and O. Silven."A Four-step Camera Calibration Procedure with Implicit Image Correction."IEEE International Conference on Computer Vision and Pattern Recognition.1997.
[23] 楊丹, 趙海濱, 龍哲. MATLAB 圖像處理實例詳解[J]. 2013.
[24] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[25] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
[26] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[J]. arXiv preprint arXiv:1703.06870, 2017.
[27] Cortes C, Vapnik V. Support vector machine [J][J]. Machine learning, 1995, 20(3): 273-297.
[28] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27.
[29] 白明, 莊嚴(yán), 王偉. 雙目立體匹配算法的研究與進(jìn)展[J]. 控制與決策, 2008, 23(7):721-729. DOI:doi:10.3321/j.issn:1001-0920.2008.07.001.
[30] 張令濤, 曲道奎, 徐方. 一種基于圖割的改進(jìn)立體匹配算法[J]. 機器人, 2010, 32(1):104-108.
[31] Leutenegger, S., M. Chli and R. Siegwart. "BRISK: Binary Robust Invariant Scalable Keypoints", Proceedings of the IEEE International Conference, ICCV, 2011.
[32] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking," Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005): pp. 1508–1511.
[33] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of the 4th Alvey Vision Conference, August 1988, pp. 147-151.
[34] Shi, J., and C. Tomasi, "Good Features to Track," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 1994, pp. 593–600.
[35] Von Noorden G K. Binocular vision & ocular motility [J]. 1990.
[36] Howard I P, Rogers B J. Binocular vision and stereopsis [M]. Oxford University Press, USA, 1995.
[37] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[38] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal?
總結(jié)
以上是生活随笔為你收集整理的植物三维模型快速重建的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 洛谷 P4859 已经没有什么好害怕的了
- 下一篇: 小样本学习只是一场学术界自嗨吗?