营销大数据分析 关键技术_营销分析的3个最关键技能
營銷大數據分析 關鍵技術
Perhaps more than any other field, marketing, especially digital marketing, revolves almost entirely around data. This makes it a rich and rewarding business to support as an analyst or a data scientist, as the volume and utility of data can be incredibly high, increasing the need and the scope of potential projects for the analytics professional.
營銷,尤其是數字營銷,可能比其他任何領域都幾乎完全圍繞數據展開。 這使得成為分析師或數據科學家成為一項富裕而有意義的業務,因為數據量和實用性可能非常高,從而增加了分析專業人員的潛在項目需求和范圍。
Marketing data has some important pitfalls, however, that can de-rail Marketing analytics programs:
營銷數據有一些重要的陷阱,但是,它們可能會使營銷分析程序脫軌:
- Marketing data is siloed across numerous sources from ad platform, social, and click-stream data to CRM and CDP data. 營銷數據從廣告平臺,社交和點擊流數據到CRM和CDP數據的眾多來源中都是孤立的。
- Integrating click-stream and marketing data is challenging without a cohesive tagging and tracking strategy that's understood by both the analytics team and the marketing team. Integrating sales and marketing data, especially in B2B, is rarely done correctly. 沒有分析團隊和市場營銷團隊都能夠理解的統一的標記和跟蹤策略,將點擊流和市場營銷數據集成在一起就具有挑戰性。 很難正確地集成銷售和營銷數據,尤其是在B2B中。
- Marketing teams have nearly a dozen different ways to measure marketing performance, meaning creating dashboards and analysis is challenging. 營銷團隊有將近十二種不同的方式來衡量營銷績效,這意味著創建儀表盤和進行分析具有挑戰性。
In this article, I’ll explain the 3 critical skills that will enable you to overcome these pitfalls.
在本文中,我將解釋使您克服這些陷阱的3個關鍵技能。
1.使用API (1. Working with APIs)
SQL and data manipulation skills aren’t going to be enough to effectively get all the data you’ll need to measure marketing programs — unless you want to manually download excel spreadsheets every day. You’ll need to learn how to code with REST APIs to automatically pull ad platform/click-stream/and other marketing data.
SQL和數據操作技能不足以有效地獲取衡量營銷計劃所需的所有數據-除非您想每天手動下載excel電子表格。 您將需要學習如何使用REST API進行編碼,以自動提取廣告平臺/點擊流/和其他營銷數據。
The biggest lie that you may have been told is that you need to be a developer to work with APIs. The truth: you don’t. Here are a couple of tips and tricks that will get you 80% of the way there:
您可能被告知的最大謊言是,您需要成為一名開發人員才能使用API??。 事實是:您沒有。 這里有一些提示和技巧,可以幫助您達到80%的目標:
Read my article on How to Pull Data from An API Using Python Requests. This article reviews how to use the Python requests package to pull email data from the Microsoft Graph API. The methods in that article will extend to working with Ad Platform APIs like the Facebook Graph API or Linkedin Ads API.
閱讀有關如何使用Python請求從API提取數據的文章。 本文介紹了如何使用Python請求包從Microsoft Graph API中提取電子郵件數據。 該文章中的方法將擴展為使用Facebook Graph API或Linkedin Ads API等廣告平臺API。
- Learn the PYODBC package. PYODBC allows you to write SQL statements and work with your database using Python. I use PYODBC to insert the data pulled from various APIs into a database. 了解PYODBC軟件包。 PYODBC允許您編寫SQL語句并使用Python使用數據庫。 我使用PYODBC將從各種API提取的數據插入數據庫。
- Use Postman. Postman is a GUI application for working with APIs. Postman allows you to enter values into a GUI and interact with APIs in a drag/drop/click format. once you’ve successfully pulled your data in Postman, you can export the API call in Python and then place that code snippet into your script. 使用郵遞員。 Postman是用于API的GUI應用程序。 Postman允許您將值輸入GUI并以拖放/單擊格式與API交互。 在Postman中成功提取數據后,您可以在Python中導出API調用,然后將該代碼段放入腳本中。
- If you don’t want to deal with any coding, and you have spare budget to work with, I recommend using either Stitch or Xplenty. These are ETL platforms that have built-in integrations with most major APIs, allowing you to move data into your database without any code. The downside to these platforms is the cost — but if you have the budget I highly recommend these as an alternative to maintaining ETL pipelines. 如果您不想處理任何編碼,并且有多余的預算可以使用,建議您使用Stitch或Xplenty。 這些ETL平臺已與大多數主要API進行了內置集成,使您無需任何代碼即可將數據移入數據庫。 這些平臺的缺點是成本–但是,如果您有預算,我強烈建議將其作為維護ETL管道的替代方法。
2.了解Web分析,點擊流數據和標記 (2. Understanding of Web Analytics, Clickstream Data, and Tagging)
It’s more than likely that your website is the primary place you send traffic and clicks with your marketing campaigns. Subsequently, to tell a complete marketing story you need to understand web analytics, clickstream data, and how that data ties to the ads you are creating.
您的網站很有可能是您通過營銷活動發送流量和點擊的主要場所。 隨后,要講述完整的營銷故事,您需要了解網絡分析,點擊流數據以及該數據如何與您正在創建的廣告聯系。
Here’s a simple example of some raw click-stream data:
這是一些原始點擊流數據的簡單示例:
You can see there is a timestamp, a unique identifier, the URL, and an SDID column that contains the unique campaign identifier from the URL tracking parameters (The tracking parameters are the values after the ‘?’ in the URL).
您可以看到時間戳,唯一標識符,URL和SDID列,其中包含來自URL跟蹤參數的唯一廣告系列標識符(跟蹤參數是URL中“?”之后的值)。
When campaigns are created in an ad platform (Facebook, Linkedin, Twitter, etc.) — information from those campaigns or ads needs to tie back to the URL where traffic is being directed. This typically happens with URL tracking parameters, but you’d be surprised how many marketing teams are either a) not tagging anything, or b) tagging ads inconsistently or incorrectly. Any discrepancy between tagging and analytics is going to mean huge gaps in the data that you are trying to collect, which will make it extremely challenging, or impossible to effectively measure marketing campaigns.
在廣告平臺(Facebook,Linkedin,Twitter等)中創建廣告系列時-來自這些廣告系列或廣告的信息需要綁定到定向流量的URL。 URL跟蹤參數通常會發生這種情況,但是您會驚訝于有多少營銷團隊要么a)沒有標記任何內容,要么b)不一致或錯誤地標記了廣告。 標記和分析之間的任何差異都將意味著您要收集的數據之間存在巨大差距,這將使其變得極具挑戰性,甚至無法有效地衡量營銷活動。
Due to the complexity of this process, I always recommend that the analyst/data scientist/whoever is going to be in charge of measurement of marketing programs, be involved with or create the tracking and tagging strategy herself. Typically the marketing team or agency will create the tagging strategy, which often leaves valuable data off the table due to a misunderstanding of the data gathering and cleaning process (for example, using the same unique identifier on multiple advertisements will make it impossible to tell which ad was responsible for the traffic/conversions/etc.). When the analyst herself owns this process, getting clean data at the end will be infinitely easier.
由于此過程的復雜性,我始終建議分析師/數據科學家/負責市場營銷計劃的人員,自己參與或創建跟蹤和標記策略的人員。 通常,營銷團隊或代理商將創建標記策略,由于誤解了數據收集和清理過程,該策略經常會將有價值的數據從表格中刪除(例如,在多個廣告上使用相同的唯一標識符將使您無法分辨出哪個標記廣告負責流量/轉化/等)。 當分析人員自己擁有這個過程時,最后獲得干凈的數據將變得非常容易。
Image by author圖片作者The above process is something that rarely happens, even with marketing teams at the biggest most technical companies. Typically, the marketers will use Adobe Analytics or Google Analytics dashboards OR they’ll default to platform-specific analytics. This can work sometimes — especially if you’re primarily an eCommerce company. Problems arise when you want all the data tied together — which currently can only be done by an analytics professional who understands the dynamics of what I’ve discussed above. B2B businesses are especially susceptible to this problem as many B2B sales take place in conference rooms and not online. So to actually measure marketing impact on sales you have to somehow connect marketing data to CRM data — which is incredibly challenging without the right analytics talent — i.e. someone whos learned these critical skills.
即使有最大的技術公司的營銷團隊,上述過程也是很少發生的。 通常,營銷人員將使用Adobe Analytics或Google Analytics(分析)儀表板,或者默認使用特定于平臺的分析。 有時這可以工作-特別是如果您主要是一家電子商務公司。 當您希望將所有數據捆綁在一起時,就會出現問題-目前這只能由了解我上面討論的動態的分析專家來完成。 B2B企業特別容易受到此問題的影響,因為許多B2B銷售都是在會議室而不是在線進行的。 因此,要真正衡量營銷對銷售的影響,您就必須以某種方式將營銷數據與CRM數據聯系起來-如果沒有合適的分析人才,這將是非常艱巨的挑戰-即,已經學會了這些關鍵技能的人。
3.強大的業務和營銷領域知識 (3. Strong Business and Marketing Domain Knowledge)
Once you have clean data compiled and integrated, then you’re ready to make that data digestible for marketing and sales teams to consume. This may be the most difficult and nuanced skill of all, as it requires you to move outside of doing technical analytics and data work, and spend time with business and marketing practitioners. You need to have a few things clear before you can create a dashboard or report that can effectively communicate marketing performance:
整理并集成了干凈的數據后,就可以準備好使這些數據易于消化,以供營銷和銷售團隊使用。 這可能是所有技能中最困難和最細微的技能,因為它要求您轉而從事技術分析和數據工作,并花時間與業務和營銷從業人員聯系。 在創建可以有效傳達營銷績效的儀表板或報告之前,您需要明確一些事項:
- What does the marketing team actually care about? Never assume what your marketing team's priorities are. You need to be very clear with the marketers you work with on what their success metrics are. If they don’t know, then you’ll have to create them and that means knowing the marketing programs and business well enough to convince the teams of KPIs that make sense. 營銷團隊實際上在乎什么? 永遠不要假設您的營銷團隊的工作重點是什么。 您需要與合作的營銷人員非常清楚其成功指標是什么。 如果他們不知道,那么您就必須創建它們,這意味著要充分了解營銷計劃和業務,才能說服有意義的KPI團隊。
- What do they consider successful? Even if your marketing team has given you success metrics that they want to look at, they’ll always want to compare it to something — whether that’s an industry-standard performance metric or time driven (i.e. this time last year, last year year-to-date, etc.) Never create a dashboard that doesn’t allow comparison against a standard or time-series. 他們認為成功了什么? 即使您的營銷團隊為您提供了他們想看的成功指標,他們也總是想將它與其他指標進行比較-無論是行業標準的績效指標還是受時間驅動的指標(例如,去年的這個時候,去年的一年,等等),切勿創建不允許與標準或時間序列進行比較的儀表板。
- Is failure ok? This is unfortunate, but several marketing teams that I’ve worked with only cared about data if it made their programs look good. You need to know this from the start — is it the intention of the team to measure and improve or just present information? Many teams just want to show stakeholders they spent the budget and drove a bunch of traffic — they don’t really care about making better ads. You’ll be making two entirely different dashboards/reports depending on which type of marketing team you’re working with. 失敗可以嗎? 不幸的是,但是我曾與之合作的幾個營銷團隊只關心數據,如果這些數據使他們的程序看起來不錯。 您需要從一開始就知道這一點-團隊的目的是衡量和改進或只是提供信息? 許多團隊只是想向利益相關者展示他們花費了預算并吸引了大量流量-他們并不真正在意制作更好的廣告。 根據要使用的營銷團隊類型,您將制作兩個完全不同的儀表板/報告。
營銷人員最好的朋友 (The Marketers Best Friend)
The three skills I’ve outlined above are absolutely critical for doing good marketing analytics. Without them, you’ll be unable to effectively measure and report on your companies marketing programs. With them, you’ll become a rare asset that will quickly make you the marketer's best friend.
我上面概述的三項技能對于做好營銷分析至關重要。 沒有他們,您將無法有效地衡量和報告公司的營銷計劃。 有了它們,您將成為稀有資產,將Swift使您成為營銷人員的最佳朋友。
Questions or comments? You can email me at cwarren@stitcher.tech. Or, follow me on Linkedin at https://www.linkedin.com/in/cameronwarren/
有疑問或意見嗎? 您可以通過cwarren@stitcher.tech向我發送電子郵件。 或者,通過Linkedin在https://www.linkedin.com/in/cameronwarren/上關注我
I also provide Marketing Analytics services. If you’d like to inquire more, email me directly at cwarren@stitcher.tech or go to http://stitcher.tech/contact/.
我還提供Marketing Analytics服務。 如果您想了解更多信息,請直接發送電子郵件至cwarren@stitcher.tech或訪問http://stitcher.tech/contact/ 。
If you want help connecting your click-stream and CRM data, check out https://stokedata.com/.
如果您需要幫助來連接點擊流和CRM數據,請訪問https://stokedata.com/ 。
翻譯自: https://towardsdatascience.com/the-3-most-critical-skills-for-marketing-analytics-e68e254908de
營銷大數據分析 關鍵技術
總結
以上是生活随笔為你收集整理的营销大数据分析 关键技术_营销分析的3个最关键技能的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 理想汽车春节数据:累计里程超1.2亿公里
- 下一篇: 华为 Mate50 系列限时优惠 300