角距离恒星_恒星问卷调查的10倍机器学习生产率
角距離恒星
With availability of massive data and computation, Machine Learning (ML) and other spheres of artificial intelligence are growing at rapid rate. AI has become the demand of time and the need of the hour. To keep up, almost every company is either starting a new Data Science/Machine Learning department or expanding rapidly with multiple projects in pipeline. Now, we have more ML competitions and hackathons than ever recorded in the history.Everyday there are new courses focusing entirely on Python libraries and Machine Learning APIs. People are sharing latest machine learning (ML) algorithms, computations, graphs, charts and code snippets on a daily basis focusing technical aspects and implementations.
隨著海量數據和計算的可用性,機器學習(ML)和其他人工智能領域正在快速增長。 人工智能已經成為時間的需求和小時的需求。 為了跟上步伐,幾乎每個公司都在建立新的數據科學/機器學習部門,或者通過多個正在計劃中的項目Swift擴張。 現在,我們比以往有更多的ML競賽和黑客馬拉松比賽。每天都有新課程完全側重于Python庫和機器學習API。 人們每天都在共享最新的機器學習(ML)算法,計算,圖形,圖表和代碼段,重點關注技術方面和實現。
Given the overload of information towards technical aspects , less focus is on Machine Learning project discovery session or requirement gathering session which focuses on business aspects of the problem. Being in this field for past few years, I have seen many successes and failures of ML projects. I strongly believe, the project requirement or discovery session is one of the prime deciders between success and failure of any ML project like any other project.
鑒于技術方面的信息過多,較少關注的是機器學習項目發現會話或需求收集會話,后者主要關注問題的業務方面。 在該領域工作了幾年,我看到了機器學習項目的許多成功和失敗。 我堅信,項目要求或發現會議是像任何其他項目一樣在任何ML項目成功與失敗之間做出決定的主要決定因素之一。
So, let’s start out journey towards making the complex simple and enhance ML productivity of your team by 10x.
因此,讓我們開始著手簡化流程,將團隊的ML生產力提高10倍。
What is Machine Learning?
什么是機器學習?
Machine learning is a branch of artificial intelligence (AI) that involves finding patterns and relationships between input and output data attributes using historical data and produces an optimized mathematical function (also called model) holding the relationship. The model is then used for predicting the output on new data.
機器學習是人工智能(AI)的一個分支,它涉及使用歷史數據查找輸入和輸出數據屬性之間的模式和關系,并產生一種保持關系的優化數學函數(也稱為模型 )。 然后將模型用于預測新數據的輸出。
How to do better discovery for Machine Learning?
如何為機器學習做更好的發現?
Unbiased View: On very first introduction/discovery meeting, go in with unbiased view with clear mind and note the high-level requirements properly. The project may be a Machine Learning one or may just need a logical model. Be open and receptive to the scope only.
平常心 :關于第一個引入/發現會議,去與清醒的頭腦平常心,正確注意高層次的需求。 該項目可能是機器學習項目,或者可能僅需要邏輯模型。 開放并只接受范圍。
Do not take anything at face value: As you are listening to the initial stakeholders and hearing machine learning/deep learning multiple times, do not worry about them at this stage. Do not think on any technology, model or any other complexities as you are progressing thru this meeting. This will help you get hold of the idea behind the project.
不要從容面對任何事情 :當您正在聆聽最初的涉眾并多次聽到機器學習/深度學習時,在此階段不必擔心。 在進行本次會議時,請不要考慮任何技術,模型或任何其他復雜性。 這將幫助您掌握項目背后的想法。
Create Discovery Notes: Post your meeting, spend next 30 mins writing your understanding of the scope in a plain documents and decide if the scope qualifies for machine learning project.
創建發現記錄 :發布您的會議,接下來的30分鐘用簡單的文檔撰寫您對范圍的理解,并確定范圍是否適合機器學習項目。
Involve Other Team Members: Post your scope documentation, discuss the scope with your team and confirm their understanding matches yours.
參與其他團隊成員:發布您的范圍文檔,與您的團隊討論范圍,并確認他們的理解與您的相符。
Share Your Scope: Share your understanding of scope with initial stakeholders for confirmation and review for any gaps.
分享您的范圍:與最初的利益相關者分享您對范圍的理解,以確認和審查任何差距。
Build excellent questionnaires: Now you have your initial signoff and ready for detailed discovery. As a data scientist, you are the detective investigating and solving the mystery. At this stage, you will build three different forms of questionnaire — Process Questionnaire, Data Questionnaire, Architecture Questionnaire.
建立出色的調查表:現在,您已完成初始簽核并準備進行詳細發現。 作為數據科學家,您是偵探們正在研究和解決這個謎團。 在此階段,您將構建三種不同形式的調查表-過程調查表,數據調查表,體系結構調查表。
流程問卷 (Process Questionnaire)
Process questionnaire focuses on business stakeholders like application owner, process owners, business analysts, process analysts etc. Questionnaire involves understanding of existing and new process flow in details. Below are questions, intentionally generic, that has to be tuned to your situation:
流程調查表側重于業務利益相關者,例如應用程序所有者,流程所有者,業務分析師,流程分析師等。問卷涉及對現有流程和新流程的詳細了解。 以下是有意通用的問題,必須根據您的情況進行調整:
數據問卷 (Data Questionnaire)
Data questionnaire tries to identify data for the business problem. This questionnaire focuses on data analyst, data owners, data base administrators and business analysts. Questionnaire involves understanding the data for the new process:
數據調查表試圖識別業務問題的數據。 該調查表側重于數據分析師,數據所有者,數據庫管理員和業務分析師。 問卷調查涉及了解新流程的數據:
建筑問卷 (Architecture Questionnaire)
Architecture questionnaires focuses on technical aspects , architecture and implementation portion of the business problem into enterprise grade solution and needs technical owners, application architects and enterprise architects to resolve.
體系結構調查表著重于將業務問題的技術方面,體系結構和實現部分轉化為企業級解決方案,并且需要技術所有者,應用程序架構師和企業架構師來解決。
Once we have answers to most of the above questions , we will be in great shape to position ourselves for successful implementation.
一旦我們對以上大多數問題都有答案,我們將處于有利的地位,為成功實施做好準備。
結論 (Conclusion)
For any ML use case to be implemented successfully, its extremely important to spend significant time understanding the business, data and architecture aspects before we set ourselves for analysis and modelling. Above questions, will set us up for first layer of success and help us reach toward 10x productivity.
對于要成功實施的任何ML用例,在投入自己進行分析和建模之前,花費大量時間了解業務,數據和體系結構方面非常重要。 以上問題,將使我們邁向成功的第一步,并幫助我們將生產率提高10倍。
If you liked the article, please feel free to clap/like/follow.
如果您喜歡這篇文章,請隨時鼓掌/喜歡/關注。
To connect — Linkedin | jagannath.banerjee@gmail.com
連接— Linkedin | jagannath.banerjee@gmail.com
翻譯自: https://medium.com/@jagannath.banerjee/10x-machine-learning-productivity-with-stellar-questionnaire-c72c7b99ca93
角距離恒星
總結
以上是生活随笔為你收集整理的角距离恒星_恒星问卷调查的10倍机器学习生产率的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 曝小米13 Ultra有两套哈苏算法 争
- 下一篇: apache beam_Apache B