二叉树期权定价与BSM期权定价
生活随笔
收集整理的這篇文章主要介紹了
二叉树期权定价与BSM期权定价
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
"""
v1.0
本程序只適用于無股息股票上歐式看漲看跌期權(quán)定價
"""import matplotlib.pyplot as plt
import time
from math import exp, sqrt, factorial, log
from scipy.stats import norm
import multiprocessing as mp
from functools import partial# 二叉樹定價函數(shù)
def binary_tree(n, S0, K, T, r, sigma, type):"""n: 二叉樹步數(shù)S0: 股票價格K: 執(zhí)行價格T: 期權(quán)期限r(nóng): 無風險利率sigma: 波動率type: call or put"""dt = T / nu = exp(sigma * sqrt(dt))d = exp(-sigma * sqrt(dt))p = (exp(r * dt) - d) / (u - d)price = 0for j in range(n + 1):price += factorial(n) / (factorial(n - j) * factorial(j)) * pow(p, j) * pow(1 - p, n - j) * max([S0 * u ** j * d ** (n - j) - K, 0])price = price * exp(-r * T)return price# BSM定價函數(shù)
def BSM(S0, K, T, r, sigma):d1 = (log(S0 / K) + (r + sigma ** 2 / 2) * T) / (sigma * sqrt(T))d2 = d1 - sigma * sqrt(T)c = S0 * norm.cdf(d1) - K * exp(-r * T) * norm.cdf(d2)p = c + K * exp(-r * T) - S0 # 看跌看漲平價return c, p# 繪圖
def plot(prices, bsm_price):"""prices: 價格序列bsm_price: BSM定價"""n = len(prices)plt.figure()plt.plot(range(1, n + 1), prices, label="binomial tree")plt.plot(range(1, n+1), [bsm_price for i in range(1, n+1)], label="BSM")plt.xlabel("n_step")plt.ylabel("price")plt.legend()plt.show()# 主函數(shù)
if __name__ == "__main__":# 參數(shù)設置params = {"S0": 50,"K": 52,"T": 2,"r": 0.05,"sigma": 0.3}n = 1000 # 二叉樹步長t0 = time.time() # 開始計時# 并行計算num_cores = int(mp.cpu_count())print("本地計算機有: " + str(num_cores) + " 核心")pool = mp.Pool(num_cores) # 并行計算池par = partial(binary_tree, **params, type="call") # 構(gòu)造偏函數(shù),方便進行并行計算prices = list(pool.imap(par, range(1, n + 1)))# 運行時間print("共用時%.2f秒" % (time.time() - t0))# BSM定價bsm_price = BSM(**params)[0]# 繪圖plot(prices, bsm_price)
"""
v2.0
本程序適用于無股息股票上的歐式美式看漲看跌期權(quán)定價
由于BSM只適用于不提前行權(quán)的期權(quán)定價,因此這里不進行BSM定價
"""import matplotlib.pyplot as plt
import time
from math import exp, sqrt
from scipy.stats import norm
import multiprocessing as mp
from functools import partial# 二叉樹定價函數(shù)
def binary_tree(n, S0, K, T, r, sigma, is_Euro, is_call):"""n: 二叉樹步數(shù)S0: 股票價格K: 執(zhí)行價格T: 期權(quán)期限r(nóng): 無風險利率sigma: 波動率is_Euro: True or Falseis_call: True or False"""dt = T / nu = exp(sigma * sqrt(dt))d = exp(-sigma * sqrt(dt))p = (exp(r * dt) - d) / (u - d)# 用二維數(shù)組存儲各步股票價格stock_price = []for i in range(n + 1):lst = []for j in range(i + 1):element = S0 * u ** (i - j) * d ** jlst.append(element)stock_price.append(lst)# 分情況計算if is_call: # 計算看漲,此時歐式與美式相同price_last = [max([0, each - K]) for each in stock_price[n]] # 葉子節(jié)點的價格for i in range(n):price = []for j in range(n - i):price.append(p * price_last[j] + (1 - p) * price_last[j + 1])price_last = priceelse:price_last = [max([0, K - each]) for each in stock_price[n]]if is_Euro: # 歐式看跌for i in range(n):price = []for j in range(n - i):price.append(p * price_last[j] + (1 - p) * price_last[j + 1])price_last = priceelse: # 美式看跌for i in range(n):price = []for j in range(n - i):p1 = p * price_last[j] + (1 - p) * price_last[j + 1]value = max([p1, K - stock_price[n-i][j]])price.append(value)price_last = pricereturn price[0]# 繪圖
def plot(prices):"""prices: 價格序列"""n = len(prices)plt.figure()plt.plot(range(1, n + 1), prices)plt.xlabel("n_step")plt.ylabel("price")plt.show()# 主程序
if __name__ == "__main__":# 參數(shù)設置params = {"S0": 50,"K": 52,"T": 2,"r": 0.05,"sigma": 0.3,"is_Euro": True,"is_call": False}n = 1000 # 二叉樹步長t0 = time.time() # 開始計時# 并行計算num_cores = int(mp.cpu_count())print("本地計算機有: " + str(num_cores) + " 核心")pool = mp.Pool(num_cores) # 并行計算池par = partial(binary_tree, **params) # 構(gòu)造偏函數(shù),方便進行并行計算prices = list(pool.imap(par, range(1, n + 1)))# 運行時間print("共用時%.2f秒" % (time.time() - t0))# 繪圖plot(prices)
總結(jié)
以上是生活随笔為你收集整理的二叉树期权定价与BSM期权定价的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 华为面试准备
- 下一篇: Java:基础 :集合和迭代器