LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
題目
Source
http://www.lightoj.com/volume_showproblem.php?problem=1298
Description
A number is Almost-K-Prime if it has exactly K prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an Almost-3-Prime and 32 = 2 * 2 * 2 * 2 * 2 is an Almost-5-Prime number. A number X is called Almost-K-First-P-Prime if it satisfies the following criterions:
1. X is an Almost-K-Prime and
2. X has all and only the first P (P ≤ K) primes in its prime factorization.
For example, if K=3 and P=2, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Pime.
For a given K and P, your task is to calculate the summation of Φ(X) for all integers X such that X is an Almost-K-First-P-Prime.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing two integers K (1 ≤ K ≤ 500) and P (1 ≤ P ≤ K).
Output
For each case, print the case number and the result modulo 1000000007.
Sample Input
3
3 2
5 4
99 45
Sample Output
Case 1: 10
Case 2: 816
Case 3: 49939643
?
分析
題目大概說,定義,一個數為Almost-K-First-P-Prime當且僅當這個數由K個質因子組成,且這K個質因子包含且僅包含于前P個質數。給定k和p,求Σphi(AkFpP)。
?
首先要知道歐拉函數這幾個性質:
然后,可以考慮用DP來解,利用上面的性質去轉移。
?
一開始我這么想的,首先由于k個質因子中那p個是一定要有的,先把它們固定下來,即∏prime[1...p],其phi值為∏(prime[1...p]-1)。然后還剩下k-p個質因子要確定,有p個質因子可以選擇,這其實就是完全背包問題了:p種物品體積都為1選了之后價值*prime[i],背包容量k-p,問所有選擇方案的價值和。
不過這樣會TLE的,數據有10000組,通過可以枚舉p把所有情況預處理出來,O(P2K)的時間復雜度,可能會超時,不過已經爆內存了。
?
事實上還有更直接的預處理方式:
- dp[i][j]表示Σphi(Almost-i-First-j-Prime)
考慮這么轉移:
- 如果prime[j]只出現一次,那么就是從dp[i-1][j-1](這個狀態prime[j]不會出現,出現的是前j-1個質數)通過第i個質因子選擇prime[j]轉移:dp[i][j]+=dp[i-1][j-1]*(prime[j]-1)
- 如果prime[j]出現多于一次,那么就是從dp[i-1][j](這個狀態prime[j]至少出現一次,再加上一次就大于1次了)轉移了:dp[i][j]+=dp[i-1][j]*prime[j]
時間復雜度就是O(PK)
其實這種轉移的分析方式覺得挺強的,分成等于1、大于等于1,這兩個能分別求出來且互補的子問題。和排隊購票那個經典題的轉移一樣。
?
下面是那兩個算法的代碼實現。
?
代碼
O(P2K)
#include<cstdio> #include<cstring> using namespace std;int prime[555];bool is_prime(int n){for(long long i=2; i*i<=n; ++i){if(n%i==0) return 0;}return 1; }long long d[501][501][500];void init(){int n=0;for(int i=2; n!=500; ++i){if(is_prime(i)){prime[++n]=i;}}for(int p=1; p<=500; ++p){d[p][0][0]=1;for(int i=1; i<=p; ++i){d[p][0][0]*=prime[i]-1;d[p][0][0]%=1000000007;}for(int i=1; i<=p; ++i){for(int j=0; j<500; ++j){if(j) d[p][i][j]=d[p][i-1][j]+d[p][i][j-1]*prime[i];else d[p][i][j]=d[p][i-1][j];d[p][i][j]%=1000000007;}}} }int main(){init();int t,k,p;scanf("%d",&t);for(int cse=1; cse<=t; ++cse){scanf("%d%d",&k,&p);printf("Case %d: %lld\n",cse,d[p][p][k-p]);}return 0; }?
O(PK)
#include<cstdio> #include<cstring> using namespace std;int prime[555];bool is_prime(int n){for(long long i=2; i*i<=n; ++i){if(n%i==0) return 0;}return 1; }long long d[555][555];void init(){int n=0;for(int i=2; n!=500; ++i){if(is_prime(i)){prime[++n]=i;}}d[0][0]=1;for(int i=1; i<=500; ++i){for(int j=1; j<=i; ++j){d[i][j]+=d[i-1][j-1]*(prime[j]-1);if(i-1>=j) d[i][j]+=d[i-1][j]*prime[j];d[i][j]%=1000000007;}} }int main(){init();int t,k,p;scanf("%d",&t);for(int cse=1; cse<=t; ++cse){scanf("%d%d",&k,&p);printf("Case %d: %lld\n",cse,d[k][p]);}return 0; }?
轉載于:https://www.cnblogs.com/WABoss/p/5767332.html
總結
以上是生活随笔為你收集整理的LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 两家云服务器价格比较
- 下一篇: 从 ThinkPHP 开发规范 看 PH