【计算神经科学冒险者们】2.3 神经编码:特征选择(Neural Encoding:Feature Selection)...
Today's Task:How to find the components of this model
1 選取特征Feature
1.1 How to proceed?
Our problem is one of dimensionality!
For instance, in the case of the movie we showed the retina, we can define a movie in terms of the intensity of three colors in every pixel in one megapixel image.
1.2 Dimensionality reduction
Start with a very high dimensional description(e.g. an image or a time-varying waveform) and pick out a small set of relevant dimensions.
s(t)----dicretize------>s(k)
?
采樣系統對于不同的刺激的響應,我們可以識別是什么輸入觸發響應。
1.3 What is the right stimulus to use?
?We want to sample the responses of the system to a variety of stimuli so we can characterize what it is about the input that triggers responses.
One common and useful method is to use Gaussian?white noise.
1.4 Determining multiple features from white noise
這里只要了解spike-trigger 平均值這個概念,就是把數據整合起來,得到一條類似于高斯函數的曲線,峰值對應的橫坐標表示的值。
1.5 Reverse correlation: the spike-triggered average 反相關系數:尖峰平均值
橫坐標上表示的是一個響應spike,我們提取從開始刺激到產生響應的時間,取它們的平均值,得到一條噪聲較少的曲線。
?
?
?每列值都是一個圖像,這里包括時間維度和空間維度。
1.6 Linear filtering
Stimulus feature f is a vector in a high-dimensional stimulus space
?線性過濾器,相當于卷積,也相當于投影。我們有一個刺激s(方向與t3相同),投影到f上s·f(???)
2 Determining the nonlinear input/output function
The input/output function is:
This can be found from data using Bayes' rule:
?
?
?P(s1)是一個高斯曲線
Nonlinear input/output function
?
?
2.1 Linear/nonlinear models
?
3 High-dimensional feature selection
?Less basc coding models
有多個過濾,選擇多個特征。core detector neuron 每個對不同的頻率的過濾。
Determining multiple feature from white noise
How could we find features?
3.1 Principal component analysis
PCA's job is to find low dimengtional structure of a cloud of points.
compression.
PCA: eigenfaces
common stracture, may be restructive by little number of photos
PCA: spike sorting
PCA gives us a method to:
1. Find a representation of our data which has lower dimensionality, giving us a computationallyeasier problem to work with.
2. Find the vectors along which the variation of our data is maximal in our feature space.
4 Finding interesting features in the retina
right group——on
left group——off
?
?這節聽得很蒙蔽啊,還是找本教科書看看吧
轉載于:https://www.cnblogs.com/uniKino/p/10165705.html
總結
以上是生活随笔為你收集整理的【计算神经科学冒险者们】2.3 神经编码:特征选择(Neural Encoding:Feature Selection)...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 微信小程序使用阿里图标
- 下一篇: 映芬视觉网页练习