久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

集成学习01_xgboost参数讲解与实战

發(fā)布時(shí)間:2023/12/20 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 集成学习01_xgboost参数讲解与实战 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本章分以下幾塊來(lái)講解

一.xgboost 模型參數(shù)介紹

二.xgboost 兩種方式實(shí)現(xiàn)

三. 網(wǎng)格搜索最優(yōu)xgboost參數(shù)

一.XGBoost的參數(shù)

XGBoost的作者把所有的參數(shù)分成了三類,這里只介紹我們常用的一些參數(shù),不常用的不做介紹

通用參數(shù):宏觀函數(shù)控制。
Booster參數(shù):控制每一步的booster(tree/regression)。
學(xué)習(xí)目標(biāo)參數(shù):控制訓(xùn)練目標(biāo)的表現(xiàn)。

1 通用參數(shù)

1)booster[默認(rèn)gbtree]

  • 選擇每次迭代的模型,有兩種選擇:
    gbtree:基于樹的模型
    gbliner:線性模型

2)silent[默認(rèn)0]

  • 當(dāng)這個(gè)參數(shù)值為1時(shí),靜默模式開啟,不會(huì)輸出任何信息。
  • 一般這個(gè)參數(shù)就保持默認(rèn)的0,因?yàn)檫@樣能幫我們更好地理解模型。

3)nthread[默認(rèn)值為最大可能的線程數(shù)]

  • 這個(gè)參數(shù)用來(lái)進(jìn)行多線程控制,應(yīng)當(dāng)輸入系統(tǒng)的核數(shù)。
  • 如果你希望使用CPU全部的核,那就不要輸入這個(gè)參數(shù),算法會(huì)自動(dòng)檢測(cè)它。

4)num_feature [set automatically by xgboost, no need to be set by user]

  • boosting過程中用到的特征維數(shù),設(shè)置為特征個(gè)數(shù)。
  • XGBoost會(huì)自動(dòng)設(shè)置,不需要手工設(shè)置。

2 booster參數(shù)

盡管有兩種booster可供選擇,我這里只介紹tree booster,因?yàn)樗谋憩F(xiàn)遠(yuǎn)遠(yuǎn)勝過linear booster,所以linear booster很少用到。

1)eta[默認(rèn)0.3]

  • 和GBM中的 learning rate 參數(shù)類似。
  • 通過減少每一步的權(quán)重,可以提高模型的魯棒性。
  • 典型值為0.01-0.2。

2)min_child_weight[默認(rèn)1]

*決定最小葉子節(jié)點(diǎn)樣本權(quán)重和。

  • 和GBM的 min_child_leaf 參數(shù)類似,但不完全一樣。XGBoost的這個(gè)參數(shù)是最小樣本權(quán)重的和,而GBM參數(shù)是最小樣本總數(shù)。
  • 這個(gè)參數(shù)用于避免過擬合。當(dāng)它的值較大時(shí),可以避免模型學(xué)習(xí)到局部的特殊樣本。
  • 但是如果這個(gè)值過高,會(huì)導(dǎo)致欠擬合。這個(gè)參數(shù)需要使用CV來(lái)調(diào)整。

3)max_depth[默認(rèn)6]

  • 和GBM中的參數(shù)相同,這個(gè)值為樹的最大深度。
  • 這個(gè)值也是用來(lái)避免過擬合的。max_depth越大,模型會(huì)學(xué)到更具體更局部的樣本。
  • 需要使用CV函數(shù)來(lái)進(jìn)行調(diào)優(yōu)。
  • 典型值:3-10

4)max_leaf_nodes

  • 樹上最大的節(jié)點(diǎn)或葉子的數(shù)量。
  • 可以替代max_depth的作用。因?yàn)槿绻傻氖嵌鏄?#xff0c;一個(gè)深度為n的樹最多生成
  • 如果定義了這個(gè)參數(shù),GBM會(huì)忽略max_depth參數(shù)。

5)gamma[默認(rèn)0]

  • 在節(jié)點(diǎn)分裂時(shí),只有分裂后損失函數(shù)的值下降了,才會(huì)分裂這個(gè)節(jié)點(diǎn)。
  • Gamma指定了節(jié)點(diǎn)分裂所需的最小損失函數(shù)下降值。這個(gè)參數(shù)的值越大,算法越保守。這個(gè)參數(shù)的值和損失函數(shù)息息相關(guān),所以是需要調(diào)整的。
  • 模型在默認(rèn)情況下,對(duì)于一個(gè)節(jié)點(diǎn)的劃分只有在其loss function 得到結(jié)果大于0的情況下才進(jìn)行,而gamma 給定了所需的最低loss function的值
  • gamma值使得算法更c(diǎn)onservation,且其值依賴于loss function ,在模型中應(yīng)該進(jìn)行調(diào)參.

6)max_delta_step[默認(rèn)0]

  • 這參數(shù)限制每棵樹權(quán)重改變的最大步長(zhǎng)。如果這個(gè)參數(shù)的值為0,那就意味著沒有約束。如果它被賦予了某個(gè)正值,那么它會(huì)讓這個(gè)算法更加保守。
  • 通常,這個(gè)參數(shù)不需要設(shè)置。但是當(dāng)各類別的樣本十分不平衡時(shí),它對(duì)邏輯回歸是很有幫助的。
  • 這個(gè)參數(shù)一般用不到,但是你可以挖掘出來(lái)它更多的用處。

7)subsample[默認(rèn)1]

  • 和GBM中的subsample參數(shù)一模一樣。這個(gè)參數(shù)控制對(duì)于每棵樹,隨機(jī)采樣的比例。
  • 減小這個(gè)參數(shù)的值,算法會(huì)更加保守,避免過擬合。但是,如果這個(gè)值設(shè)置得過小,它可能會(huì)導(dǎo)致欠擬合。
  • 典型值:0.5-1

8)colsample_bytree[默認(rèn)1]

  • 和GBM里面的max_features參數(shù)類似。用來(lái)控制每棵隨機(jī)采樣的列數(shù)的占比(每一列是一個(gè)特征)。
  • 典型值:0.5-1

9)colsample_bylevel[默認(rèn)1]

  • 用來(lái)控制樹的每一級(jí)的每一次分裂,對(duì)列數(shù)的采樣的占比。
  • 一般不太用這個(gè)參數(shù),因?yàn)閟ubsample參數(shù)和colsample_bytree參數(shù)可以起到相同的作用。但是如果感興趣,可以挖掘這個(gè)參數(shù)更多的用處。

10)lambda[默認(rèn)1]

  • 權(quán)重的L2正則化項(xiàng)。(和Ridge regression類似)。
  • 這個(gè)參數(shù)是用來(lái)控制XGBoost的正則化部分的。

11)alpha[默認(rèn)1]

  • 權(quán)重的L1正則化項(xiàng)。(和Lasso regression類似)。
  • 可以應(yīng)用在很高維度的情況下,使得算法的速度更快。

12)scale_pos_weight[默認(rèn)1]

  • 在各類別樣本十分不平衡時(shí),把這個(gè)參數(shù)設(shè)定為一個(gè)正值,可以使算法更快收斂。
  • 大于0的取值可以處理類別不平衡的情況。幫助模型更快收斂。

13) Parameter for Linear Booster

lambda_bias

  • 在偏置上的L2正則。缺省值為0(在L1上沒有偏置項(xiàng)的正則,因?yàn)長(zhǎng)1時(shí)偏置不重要)

3 學(xué)習(xí)目標(biāo)參數(shù)

這個(gè)參數(shù)用來(lái)控制理想的優(yōu)化目標(biāo)和每一步結(jié)果的度量方法。

1)objective[默認(rèn)reg:linear]

  • 這個(gè)參數(shù)定義需要被最小化的損失函數(shù)。最常用的值有: 定義學(xué)習(xí)任務(wù)及相應(yīng)的學(xué)習(xí)目標(biāo),可選的目標(biāo)函數(shù)如下:
  • “reg:linear” –線性回歸。
  • “reg:logistic” –邏輯回歸。
  • “binary:logistic” –二分類的邏輯回歸問題,輸出為概率。
  • “binary:logitraw” –二分類的邏輯回歸問題,輸出的結(jié)果為wTx。
  • “count:poisson” –計(jì)數(shù)問題的poisson回歸,輸出結(jié)果為poisson分布。
  • 在poisson回歸中,max_delta_step的缺省值為0.7。(used to safeguard optimization)
  • “multi:softmax” –讓XGBoost采用softmax目標(biāo)函數(shù)處理多分類問題,同時(shí)需要設(shè)置參數(shù)num_class(類別個(gè)數(shù))
  • “multi:softprob” –和softmax一樣,但是輸出的是ndata * nclass的向量,可以將該向量reshape成ndata行nclass列的矩陣。每行數(shù)據(jù)表示樣本所屬于每個(gè)類別的概率。
  • “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss

2)eval_metric[默認(rèn)值取決于objective參數(shù)的取值]

  • 對(duì)于有效數(shù)據(jù)的度量方法。
  • 對(duì)于回歸問題,默認(rèn)值是rmse,對(duì)于分類問題,默認(rèn)值是error。
  • 典型值有:
  • rmse 均方根誤差
  • mae 平均絕對(duì)誤差
  • logloss 負(fù)對(duì)數(shù)似然函數(shù)值
  • error 二分類錯(cuò)誤率(閾值為0.5)
  • merror 多分類錯(cuò)誤率
  • mlogloss 多分類logloss損失函數(shù)
  • auc 曲線下面積

3)seed(默認(rèn)0)

  • 隨機(jī)數(shù)的種子
  • 設(shè)置它可以復(fù)現(xiàn)隨機(jī)數(shù)據(jù)的結(jié)果,也可以用于調(diào)整參數(shù)
  • 如果你比較習(xí)慣scikit-learn的參數(shù)形式,那么XGBoost的Python 版本也提供了sklearn形式的接口 XGBClassifier。

4)sklearn 參數(shù)對(duì)照

它使用sklearn形式的參數(shù)命名方式,對(duì)應(yīng)關(guān)系如下:

  • 1、eta -> learning_rate
  • 2、lambda -> reg_lambda
  • 3、alpha -> reg_alpha

4.平臺(tái)控制參數(shù) Console Parameters

The following parameters are only used in the console version of xgboost

  • use_buffer [ default=1 ]
    是否為輸入創(chuàng)建二進(jìn)制的緩存文件,緩存文件可以加速計(jì)算。缺省值為1
  • num_round
    boosting迭代計(jì)算次數(shù)。
  • data
    輸入數(shù)據(jù)的路徑
  • test:data
    測(cè)試數(shù)據(jù)的路徑
  • save_period [default=0]
    表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代計(jì)算XGBoost將會(huì)保存中間結(jié)果,設(shè)置為0表示每次計(jì)算的模型都要保持。
  • task [default=train] options: train, pred, eval, dump
    train:訓(xùn)練模型
    pred:對(duì)測(cè)試數(shù)據(jù)進(jìn)行預(yù)測(cè)
    eval:通過eval[name]=filenam定義評(píng)價(jià)指標(biāo)
    dump:將學(xué)習(xí)模型保存成文本格式
  • model_in [default=NULL]
    指向模型的路徑在test, eval, dump都會(huì)用到,如果在training中定義XGBoost將會(huì)接著輸入模型繼續(xù)訓(xùn)練
  • model_out [default=NULL]
    訓(xùn)練完成后模型的保存路徑,如果沒有定義則會(huì)輸出類似0003.model這樣的結(jié)果,0003是第三次訓(xùn)練的模型結(jié)果。
  • model_dir [default=models]
    輸出模型所保存的路徑。
  • fmap
    feature map, used for dump model
  • name_dump [default=dump.txt]
    name of model dump file
  • name_pred [default=pred.txt]
    預(yù)測(cè)結(jié)果文件
  • pred_margin [default=0]
    輸出預(yù)測(cè)的邊界,而不是轉(zhuǎn)換后的概率

二.xgboost 實(shí)現(xiàn)

本章以優(yōu)惠券推薦數(shù)據(jù)為例對(duì)xgboost結(jié)合skleran與直接采用xgboost進(jìn)行實(shí)現(xiàn)

1.導(dǎo)入相關(guān)包

import pandas as pd, numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import metrics import catboost as cb import xgboost as xgb from xgboost.sklearn import XGBClassifier import os import joblib from sklearn.preprocessing import LabelEncoder from collections import defaultdict data=pd.read_excel('car_coupon.xlsx') data.head(5) IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY01234
11263No Urgent PlaceFriend(s)0001Male55Widowed...00111Sunny14Coffee House241
20136WorkAlone1010Female26Married partner...00333Sunny7Bar240
14763WorkAlone1001Female55Single...00111Sunny7Coffee House240
12612No Urgent PlaceKid(s)1001Female41Married partner...03333Sunny10Carry out & Take away20
17850No Urgent PlacePartner1001Female31Married partner...11101010Snowy14Coffee House20

5 rows × 23 columns

2.數(shù)據(jù)處理

  • 對(duì)類別數(shù)據(jù)進(jìn)行編碼
d = defaultdict(LabelEncoder) data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \'weather','coupon' ]]=data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \'weather','coupon' ]].apply(lambda x: d[x.name].fit_transform(x)) data.head(5) IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY01234
112631100011554...001112142241
201362010100261...00333270240
147632010010552...00111272240
126121210010411...03333210120
178501310010311...11101010114220

5 rows × 23 columns

  • 切分訓(xùn)練集與測(cè)試集
train, test, y_train, y_test = train_test_split(data.drop(["Y"], axis=1), data["Y"],random_state=10, test_size=0.3)
  • 注意下 data ,train, test, y_train, y_test的數(shù)據(jù)格式
print(type(data)) print(type(train)) print(type( test)) print(type(y_train)) print(type(y_test)) <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.series.Series'> <class 'pandas.core.series.Series'>
  • 撰寫評(píng)價(jià)函數(shù)
def model_eval2(m, train, test):print('train_roc_auc_score:',metrics.roc_auc_score(y_train, m.predict_proba(train)[:, 1]))print('test_roc_auc_score:',metrics.roc_auc_score(y_test, m.predict_proba(test)[:, 1]))print('train_accuracy_score:',metrics.accuracy_score(y_train, m.predict(train)))print('test_accuracy_score:',metrics.accuracy_score(y_test, m.predict(test)))print('train_precision_score:',metrics.precision_score(y_train, m.predict(train)))print('test__precision_score:',metrics.precision_score(y_test, m.predict(test)))print('train_recall_score:',metrics.recall_score(y_train, m.predict(train)))print('test_recall_score:',metrics.recall_score(y_test, m.predict(test)))print('train_f1_score:',metrics.f1_score(y_train, m.predict(train)))print('test_f1_score:',metrics.f1_score(y_test, m.predict(test)))

3.結(jié)合sklearn的xgboot模型

step01-擬合模型

from xgboost.sklearn import XGBClassifier xgboost_model = XGBClassifier() eval_set = [(test.values, y_test.values)] #擬合模型 xgboost_model.fit(train.values, y_train.values, early_stopping_rounds=300, eval_metric="logloss", # 損失函數(shù)的類型,分類一般都是用對(duì)數(shù)作為損失函數(shù)eval_set=eval_set,verbose=False) D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.warnings.warn( D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.warnings.warn( XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, gamma=0, gpu_id=-1, grow_policy=&#x27;depthwise&#x27;,importance_type=None, interaction_constraints=&#x27;&#x27;,learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,missing=nan, monotone_constraints=&#x27;()&#x27;, n_estimators=100,n_jobs=0, num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, gamma=0, gpu_id=-1, grow_policy=&#x27;depthwise&#x27;,importance_type=None, interaction_constraints=&#x27;&#x27;,learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,missing=nan, monotone_constraints=&#x27;()&#x27;, n_estimators=100,n_jobs=0, num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, ...)</pre></div></div></div></div></div>

step02-評(píng)價(jià)模型

model_eval2(xgboost_model, train.values, test.values) train_roc_auc_score: 0.890295988831706 test_roc_auc_score: 0.7178983466569767 train_accuracy_score: 0.8007142857142857 test_accuracy_score: 0.6683333333333333 train_precision_score: 0.7965116279069767 test__precision_score: 0.704225352112676 train_recall_score: 0.8681875792141952 test_recall_score: 0.7267441860465116 train_f1_score: 0.8308065494238933 test_f1_score: 0.7153075822603719

step03-利用模型預(yù)測(cè)

  • xgboost_model.predict 預(yù)測(cè)結(jié)果是0或1的int型
  • xgboost_model.predict_proba預(yù)測(cè)結(jié)果是0到1之間的float型
y_test_pred = xgboost_model.predict( test.values ) y_trian_prod = xgboost_model.predict_proba( train.values )

step04-保存和調(diào)用模型

joblib.dump(xgboost_model , r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model') load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model') load_model.predict( test.values ) array([0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1,0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,0, 1, 1, 0, 1, 0])

注意點(diǎn)

  • 上面xgboost_model.fit傳入的是train.values和y_train.values,數(shù)據(jù)類型為numpy.ndarray
  • 上面* xgboost_model.predict與xgboost_model.predict_proba傳入的數(shù)據(jù)類型為numpy.ndarray
print(type(data.values)) print(type(train.values)) print(type( test.values)) print(type(y_train.values)) print(type(y_test.values)) <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'>

4.直接采用xgboost的模型

step-01 構(gòu)建參數(shù)

params={'alpha': 0.09,'booster': 'gbtree','colsample_bylevel': 0.4,'colsample_bytree': 0.7,'eval_metric': 'logloss','gamma': 0.85,'learning_rate': 0.1,'max_depth': 7,'min_child_weight': 20,'n_estimator': 40,'objective': 'binary:logistic','reg_lambda': 0.1,'seed': 1,'subsample': 0.6}

step-02 處理數(shù)據(jù)

dtrain = xgb.DMatrix(train, label=y_train,feature_names=list(train.columns)) dtest = xgb.DMatrix(test) validation = xgb.DMatrix(test,y_test) watchlist = [(validation,'train')]

step-03 擬合模型

model = xgb.train(params,dtrain,num_boost_round= 2000, # 迭代的次數(shù),及弱學(xué)習(xí)器的個(gè)數(shù)evals= watchlist) [21:06:30] WARNING: C:/Users/administrator/workspace/xgboost-win64_release_1.6.0/src/learner.cc:627: Parameters: { "n_estimator" } might not be used.This could be a false alarm, with some parameters getting used by language bindings butthen being mistakenly passed down to XGBoost core, or some parameter actually being usedbut getting flagged wrongly here. Please open an issue if you find any such cases.[0] train-logloss:0.68835 [1] train-logloss:0.68565 [2] train-logloss:0.68298 [3] train-logloss:0.67752 [4] train-logloss:0.67465 [5] train-logloss:0.67235 [6] train-logloss:0.66660 [7] train-logloss:0.66280 [8] train-logloss:0.66026 [9] train-logloss:0.65894 [10] train-logloss:0.65901 [11] train-logloss:0.65892 [12] train-logloss:0.65751 [13] train-logloss:0.65512 [14] train-logloss:0.65389 [15] train-logloss:0.65229 [16] train-logloss:0.64792 [17] train-logloss:0.64436 [18] train-logloss:0.64343 [19] train-logloss:0.64374 [20] train-logloss:0.64223 [21] train-logloss:0.63890 [22] train-logloss:0.63934 [23] train-logloss:0.63531 [24] train-logloss:0.63163 [25] train-logloss:0.63014 [26] train-logloss:0.62985 [27] train-logloss:0.62939 [28] train-logloss:0.62872 [29] train-logloss:0.62832 [30] train-logloss:0.62718 [31] train-logloss:0.62531 [32] train-logloss:0.62274 [33] train-logloss:0.62034 [34] train-logloss:0.61853 [35] train-logloss:0.61825 [36] train-logloss:0.61698 [37] train-logloss:0.61518 [38] train-logloss:0.61462 [39] train-logloss:0.61375 [40] train-logloss:0.61137 [41] train-logloss:0.61013 [42] train-logloss:0.61013 [43] train-logloss:0.61091 [44] train-logloss:0.60978 [45] train-logloss:0.60987 [46] train-logloss:0.60909 [47] train-logloss:0.60926 [48] train-logloss:0.60889 [49] train-logloss:0.60833 [50] train-logloss:0.60849 [51] train-logloss:0.60889 [52] train-logloss:0.60871 [53] train-logloss:0.60861 [54] train-logloss:0.60935 [55] train-logloss:0.60868 [56] train-logloss:0.60836 [57] train-logloss:0.60862 [58] train-logloss:0.60933 [59] train-logloss:0.60926 [60] train-logloss:0.60929 [61] train-logloss:0.60936 [62] train-logloss:0.60876 [63] train-logloss:0.60862 [64] train-logloss:0.60866 [65] train-logloss:0.60921 [66] train-logloss:0.60946 [67] train-logloss:0.60896 [68] train-logloss:0.60919 [69] train-logloss:0.60852 [70] train-logloss:0.60873 [71] train-logloss:0.60902 [72] train-logloss:0.60903 [73] train-logloss:0.60881 [74] train-logloss:0.60862 [75] train-logloss:0.60658 [76] train-logloss:0.60641 [77] train-logloss:0.60657 [78] train-logloss:0.60661 [79] train-logloss:0.60736 [80] train-logloss:0.60740 [81] train-logloss:0.60726 [82] train-logloss:0.60717 [83] train-logloss:0.60745 [84] train-logloss:0.60663 [85] train-logloss:0.60681 [86] train-logloss:0.60718 [87] train-logloss:0.60616 [88] train-logloss:0.60682 [89] train-logloss:0.60632 [90] train-logloss:0.60609 [91] train-logloss:0.60548 [92] train-logloss:0.60544 [93] train-logloss:0.60522 [94] train-logloss:0.60536 [95] train-logloss:0.60596 [96] train-logloss:0.60680 [97] train-logloss:0.60665 [98] train-logloss:0.60742 [99] train-logloss:0.60716 [100] train-logloss:0.60704 [101] train-logloss:0.60628 [102] train-logloss:0.60648 [103] train-logloss:0.60658 [104] train-logloss:0.60748 [105] train-logloss:0.60746 [106] train-logloss:0.60750 [107] train-logloss:0.60736 [108] train-logloss:0.60640 [109] train-logloss:0.60703 [110] train-logloss:0.60651 [111] train-logloss:0.60647 [112] train-logloss:0.60556 [113] train-logloss:0.60544 [114] train-logloss:0.60372 [115] train-logloss:0.60246 [116] train-logloss:0.60285 [117] train-logloss:0.60266 [118] train-logloss:0.60286 [119] train-logloss:0.60331 [120] train-logloss:0.60429 [121] train-logloss:0.60428 [122] train-logloss:0.60386 [123] train-logloss:0.60349 [124] train-logloss:0.60357 [125] train-logloss:0.60228 [126] train-logloss:0.60228 [127] train-logloss:0.60304 [128] train-logloss:0.60288 [129] train-logloss:0.60234 [130] train-logloss:0.60196 [131] train-logloss:0.60220 [132] train-logloss:0.60163 [133] train-logloss:0.60118 [134] train-logloss:0.60188 [135] train-logloss:0.60089 [136] train-logloss:0.60052 [137] train-logloss:0.60121 [138] train-logloss:0.60029 [139] train-logloss:0.59980 [140] train-logloss:0.60066 [141] train-logloss:0.60037 [142] train-logloss:0.60084 [143] train-logloss:0.60068 [144] train-logloss:0.60141 [145] train-logloss:0.60053 [146] train-logloss:0.60028 [147] train-logloss:0.60044 [148] train-logloss:0.59957 [149] train-logloss:0.60004 [150] train-logloss:0.59962 [151] train-logloss:0.59961 [152] train-logloss:0.59938 [153] train-logloss:0.59880 [154] train-logloss:0.59873 [155] train-logloss:0.59878 [156] train-logloss:0.59905 [157] train-logloss:0.59885 [158] train-logloss:0.59913 [159] train-logloss:0.59885 [160] train-logloss:0.59845 [161] train-logloss:0.59908 [162] train-logloss:0.59909 [163] train-logloss:0.59804 [164] train-logloss:0.59788 [165] train-logloss:0.59796 [166] train-logloss:0.59915 [167] train-logloss:0.59874 [168] train-logloss:0.59868 [169] train-logloss:0.59866 [170] train-logloss:0.59915 [171] train-logloss:0.59945 [172] train-logloss:0.59978 [173] train-logloss:0.59945 [174] train-logloss:0.59956 [175] train-logloss:0.59835 [176] train-logloss:0.59840 [177] train-logloss:0.59836 [178] train-logloss:0.59825 [179] train-logloss:0.59791 [180] train-logloss:0.59836 [181] train-logloss:0.59813 [182] train-logloss:0.59832 [183] train-logloss:0.59790 [184] train-logloss:0.59847 [185] train-logloss:0.59873 [186] train-logloss:0.59886 [187] train-logloss:0.59942 [188] train-logloss:0.59865 [189] train-logloss:0.59852 [190] train-logloss:0.59852 [191] train-logloss:0.59848 [192] train-logloss:0.59884 [193] train-logloss:0.59845 [194] train-logloss:0.59827 [195] train-logloss:0.59773 [196] train-logloss:0.59742 [197] train-logloss:0.59782 [198] train-logloss:0.59742 [199] train-logloss:0.59765 [200] train-logloss:0.59699 [201] train-logloss:0.59748 [202] train-logloss:0.59788 [203] train-logloss:0.59799 [204] train-logloss:0.59756 [205] train-logloss:0.59685 [206] train-logloss:0.59746 [207] train-logloss:0.59756 [208] train-logloss:0.59718 [209] train-logloss:0.59742 [210] train-logloss:0.59784 [211] train-logloss:0.59826 [212] train-logloss:0.59800 [213] train-logloss:0.59736 [214] train-logloss:0.59694 [215] train-logloss:0.59707 [216] train-logloss:0.59706 [217] train-logloss:0.59695 [218] train-logloss:0.59711 [219] train-logloss:0.59697 [220] train-logloss:0.59773 [221] train-logloss:0.59839 [222] train-logloss:0.59860 [223] train-logloss:0.59783 [224] train-logloss:0.59776 [225] train-logloss:0.59783 [226] train-logloss:0.59780 [227] train-logloss:0.59815 [228] train-logloss:0.59765 [229] train-logloss:0.59831 [230] train-logloss:0.59830 [231] train-logloss:0.59818 [232] train-logloss:0.59829 [233] train-logloss:0.59806 [234] train-logloss:0.59734 [235] train-logloss:0.59763 [236] train-logloss:0.59748 [237] train-logloss:0.59630 [238] train-logloss:0.59615 [239] train-logloss:0.59571 [240] train-logloss:0.59605 [241] train-logloss:0.59521 [242] train-logloss:0.59485 [243] train-logloss:0.59427 [244] train-logloss:0.59476 [245] train-logloss:0.59555 [246] train-logloss:0.59568 [247] train-logloss:0.59555 [248] train-logloss:0.59653 [249] train-logloss:0.59710 [250] train-logloss:0.59722 [251] train-logloss:0.59678 [252] train-logloss:0.59689 [253] train-logloss:0.59721 [254] train-logloss:0.59773 [255] train-logloss:0.59789 [256] train-logloss:0.59814 [257] train-logloss:0.59722 [258] train-logloss:0.59697 [259] train-logloss:0.59736 [260] train-logloss:0.59678 [261] train-logloss:0.59661 [262] train-logloss:0.59701 [263] train-logloss:0.59634 [264] train-logloss:0.59628 [265] train-logloss:0.59599 [266] train-logloss:0.59570 [267] train-logloss:0.59623 [268] train-logloss:0.59656 [269] train-logloss:0.59578 [270] train-logloss:0.59617 [271] train-logloss:0.59549 [272] train-logloss:0.59521 [273] train-logloss:0.59510 [274] train-logloss:0.59484 [275] train-logloss:0.59461 [276] train-logloss:0.59496 [277] train-logloss:0.59509 [278] train-logloss:0.59511 [279] train-logloss:0.59475 [280] train-logloss:0.59425 [281] train-logloss:0.59337 [282] train-logloss:0.59408 [283] train-logloss:0.59440 [284] train-logloss:0.59461 [285] train-logloss:0.59478 [286] train-logloss:0.59540 [287] train-logloss:0.59601 [288] train-logloss:0.59565 [289] train-logloss:0.59641 [290] train-logloss:0.59619 [291] train-logloss:0.59652 [292] train-logloss:0.59666 [293] train-logloss:0.59647 [294] train-logloss:0.59690 [295] train-logloss:0.59681 [296] train-logloss:0.59674 [297] train-logloss:0.59613 [298] train-logloss:0.59633 [299] train-logloss:0.59615 [300] train-logloss:0.59657 [301] train-logloss:0.59685 [302] train-logloss:0.59679 [303] train-logloss:0.59676 [304] train-logloss:0.59651 [305] train-logloss:0.59599 [306] train-logloss:0.59591 [307] train-logloss:0.59589 [308] train-logloss:0.59606 [309] train-logloss:0.59680 [310] train-logloss:0.59755 [311] train-logloss:0.59776 [312] train-logloss:0.59839 [313] train-logloss:0.59982 [314] train-logloss:0.60061 [315] train-logloss:0.60068 [316] train-logloss:0.60074 [317] train-logloss:0.60003 [318] train-logloss:0.59996 [319] train-logloss:0.59952 [320] train-logloss:0.59922 [321] train-logloss:0.59896 [322] train-logloss:0.59843 [323] train-logloss:0.59792 [324] train-logloss:0.59771 [325] train-logloss:0.59799 [326] train-logloss:0.59850 [327] train-logloss:0.59840 [328] train-logloss:0.59858 [329] train-logloss:0.59830 [330] train-logloss:0.59859 [331] train-logloss:0.59892 [332] train-logloss:0.59962 [333] train-logloss:0.59948 [334] train-logloss:0.59957 [335] train-logloss:0.59921 [336] train-logloss:0.59992 [337] train-logloss:0.60011 [338] train-logloss:0.60025 [339] train-logloss:0.60013 [340] train-logloss:0.59981 [341] train-logloss:0.59978 [342] train-logloss:0.59933 [343] train-logloss:0.59936 [344] train-logloss:0.59835 [345] train-logloss:0.59806 [346] train-logloss:0.59652 [347] train-logloss:0.59686 [348] train-logloss:0.59685 [349] train-logloss:0.59660 [350] train-logloss:0.59550 [351] train-logloss:0.59544 [352] train-logloss:0.59591 [353] train-logloss:0.59621 [354] train-logloss:0.59615 [355] train-logloss:0.59651 [356] train-logloss:0.59627 [357] train-logloss:0.59743 [358] train-logloss:0.59777 [359] train-logloss:0.59810 [360] train-logloss:0.59777 [361] train-logloss:0.59743 [362] train-logloss:0.59659 [363] train-logloss:0.59644 [364] train-logloss:0.59640 [365] train-logloss:0.59634 [366] train-logloss:0.59636 [367] train-logloss:0.59684 [368] train-logloss:0.59731 [369] train-logloss:0.59742 [370] train-logloss:0.59739 [371] train-logloss:0.59784 [372] train-logloss:0.59729 [373] train-logloss:0.59773 [374] train-logloss:0.59768 [375] train-logloss:0.59806 [376] train-logloss:0.59811 [377] train-logloss:0.59777 [378] train-logloss:0.59874 [379] train-logloss:0.59870 [380] train-logloss:0.59868 [381] train-logloss:0.59937 [382] train-logloss:0.59917 [383] train-logloss:0.59956 [384] train-logloss:0.59952 [385] train-logloss:0.59952 [386] train-logloss:0.59907 [387] train-logloss:0.59934 [388] train-logloss:0.59920 [389] train-logloss:0.59938 [390] train-logloss:0.59972 [391] train-logloss:0.59959 [392] train-logloss:0.59966 [393] train-logloss:0.59993 [394] train-logloss:0.59983 [395] train-logloss:0.60023 [396] train-logloss:0.60025 [397] train-logloss:0.60012 [398] train-logloss:0.59959 [399] train-logloss:0.59971 [400] train-logloss:0.59964 [401] train-logloss:0.59952 [402] train-logloss:0.59944 [403] train-logloss:0.59939 [404] train-logloss:0.59934 [405] train-logloss:0.59978 [406] train-logloss:0.59954 [407] train-logloss:0.59956 [408] train-logloss:0.59985 [409] train-logloss:0.59924 [410] train-logloss:0.59999 [411] train-logloss:0.60040 [412] train-logloss:0.60098 [413] train-logloss:0.60030 [414] train-logloss:0.60028 [415] train-logloss:0.59985 [416] train-logloss:0.60055 [417] train-logloss:0.60067 [418] train-logloss:0.60093 [419] train-logloss:0.60046 [420] train-logloss:0.60099 [421] train-logloss:0.60128 [422] train-logloss:0.60063 [423] train-logloss:0.60044 [424] train-logloss:0.60062 [425] train-logloss:0.60075 [426] train-logloss:0.60039 [427] train-logloss:0.60039 [428] train-logloss:0.60120 [429] train-logloss:0.60134 [430] train-logloss:0.60121 [431] train-logloss:0.60132 [432] train-logloss:0.60147 [433] train-logloss:0.60110 [434] train-logloss:0.60113 [435] train-logloss:0.60103 [436] train-logloss:0.60065 [437] train-logloss:0.60031 [438] train-logloss:0.60043 [439] train-logloss:0.60048 [440] train-logloss:0.60005 [441] train-logloss:0.59975 [442] train-logloss:0.59958 [443] train-logloss:0.59946 [444] train-logloss:0.59932 [445] train-logloss:0.59964 [446] train-logloss:0.59884 [447] train-logloss:0.59847 [448] train-logloss:0.59863 [449] train-logloss:0.59869 [450] train-logloss:0.59856 [451] train-logloss:0.59894 [452] train-logloss:0.59901 [453] train-logloss:0.59873 [454] train-logloss:0.59953 [455] train-logloss:0.59953 [456] train-logloss:0.59972 [457] train-logloss:0.59962 [458] train-logloss:0.59994 [459] train-logloss:0.60006 [460] train-logloss:0.60028 [461] train-logloss:0.60110 [462] train-logloss:0.60111 [463] train-logloss:0.60122 [464] train-logloss:0.60074 [465] train-logloss:0.60093 [466] train-logloss:0.60080 [467] train-logloss:0.60120 [468] train-logloss:0.60122 [469] train-logloss:0.60124 [470] train-logloss:0.60122 [471] train-logloss:0.60116 [472] train-logloss:0.60101 [473] train-logloss:0.60090 [474] train-logloss:0.60111 [475] train-logloss:0.60109 [476] train-logloss:0.60151 [477] train-logloss:0.60201 [478] train-logloss:0.60160 [479] train-logloss:0.60101 [480] train-logloss:0.60132 [481] train-logloss:0.60067 [482] train-logloss:0.60054 [483] train-logloss:0.60041 [484] train-logloss:0.60017 [485] train-logloss:0.60025 [486] train-logloss:0.60024 [487] train-logloss:0.59967 [488] train-logloss:0.59935 [489] train-logloss:0.59868 [490] train-logloss:0.59907 [491] train-logloss:0.59912 [492] train-logloss:0.59919 [493] train-logloss:0.59890 [494] train-logloss:0.59955 [495] train-logloss:0.59947 [496] train-logloss:0.59907 [497] train-logloss:0.59937 [498] train-logloss:0.59933 [499] train-logloss:0.59960 [500] train-logloss:0.60029 [501] train-logloss:0.60047 [502] train-logloss:0.60013 [503] train-logloss:0.59989 [504] train-logloss:0.60059 [505] train-logloss:0.60072 [506] train-logloss:0.60102 [507] train-logloss:0.60086 [508] train-logloss:0.60060 [509] train-logloss:0.60126 [510] train-logloss:0.60112 [511] train-logloss:0.60126 [512] train-logloss:0.60129 [513] train-logloss:0.60059 [514] train-logloss:0.59989 [515] train-logloss:0.60005 [516] train-logloss:0.59968 [517] train-logloss:0.60008 [518] train-logloss:0.60084 [519] train-logloss:0.60062 [520] train-logloss:0.60111 [521] train-logloss:0.60070 [522] train-logloss:0.60063 [523] train-logloss:0.60065 [524] train-logloss:0.60044 [525] train-logloss:0.60053 [526] train-logloss:0.60099 [527] train-logloss:0.60125 [528] train-logloss:0.60105 [529] train-logloss:0.60155 [530] train-logloss:0.60176 [531] train-logloss:0.60249 [532] train-logloss:0.60304 [533] train-logloss:0.60372 [534] train-logloss:0.60326 [535] train-logloss:0.60391 [536] train-logloss:0.60371 [537] train-logloss:0.60472 [538] train-logloss:0.60431 [539] train-logloss:0.60337 [540] train-logloss:0.60355 [541] train-logloss:0.60365 [542] train-logloss:0.60295 [543] train-logloss:0.60268 [544] train-logloss:0.60312 [545] train-logloss:0.60293 [546] train-logloss:0.60275 [547] train-logloss:0.60344 [548] train-logloss:0.60334 [549] train-logloss:0.60411 [550] train-logloss:0.60460 [551] train-logloss:0.60409 [552] train-logloss:0.60423 [553] train-logloss:0.60366 [554] train-logloss:0.60341 [555] train-logloss:0.60364 [556] train-logloss:0.60365 [557] train-logloss:0.60316 [558] train-logloss:0.60353 [559] train-logloss:0.60382 [560] train-logloss:0.60396 [561] train-logloss:0.60426 [562] train-logloss:0.60465 [563] train-logloss:0.60500 [564] train-logloss:0.60502 [565] train-logloss:0.60465 [566] train-logloss:0.60496 [567] train-logloss:0.60545 [568] train-logloss:0.60523 [569] train-logloss:0.60451 [570] train-logloss:0.60424 [571] train-logloss:0.60479 [572] train-logloss:0.60501 [573] train-logloss:0.60472 [574] train-logloss:0.60399 [575] train-logloss:0.60399 [576] train-logloss:0.60339 [577] train-logloss:0.60306 [578] train-logloss:0.60286 [579] train-logloss:0.60302 [580] train-logloss:0.60266 [581] train-logloss:0.60206 [582] train-logloss:0.60216 [583] train-logloss:0.60172 [584] train-logloss:0.60186 [585] train-logloss:0.60173 [586] train-logloss:0.60159 [587] train-logloss:0.60130 [588] train-logloss:0.60173 [589] train-logloss:0.60182 [590] train-logloss:0.60176 [591] train-logloss:0.60224 [592] train-logloss:0.60242 [593] train-logloss:0.60209 [594] train-logloss:0.60148 [595] train-logloss:0.60173 [596] train-logloss:0.60187 [597] train-logloss:0.60157 [598] train-logloss:0.60219 [599] train-logloss:0.60211 [600] train-logloss:0.60197 [601] train-logloss:0.60217 [602] train-logloss:0.60158 [603] train-logloss:0.60171 [604] train-logloss:0.60143 [605] train-logloss:0.60067 [606] train-logloss:0.60052 [607] train-logloss:0.60008 [608] train-logloss:0.59992 [609] train-logloss:0.60023 [610] train-logloss:0.60063 [611] train-logloss:0.60079 [612] train-logloss:0.60056 [613] train-logloss:0.60045 [614] train-logloss:0.60035 [615] train-logloss:0.60040 [616] train-logloss:0.60038 [617] train-logloss:0.60047 [618] train-logloss:0.60006 [619] train-logloss:0.60058 [620] train-logloss:0.60048 [621] train-logloss:0.60130 [622] train-logloss:0.60134 [623] train-logloss:0.60108 [624] train-logloss:0.60107 [625] train-logloss:0.60103 [626] train-logloss:0.60110 [627] train-logloss:0.60111 [628] train-logloss:0.60118 [629] train-logloss:0.60107 [630] train-logloss:0.60026 [631] train-logloss:0.60035 [632] train-logloss:0.60089 [633] train-logloss:0.60139 [634] train-logloss:0.60136 [635] train-logloss:0.60107 [636] train-logloss:0.60094 [637] train-logloss:0.60075 [638] train-logloss:0.60102 [639] train-logloss:0.60164 [640] train-logloss:0.60075 [641] train-logloss:0.60064 [642] train-logloss:0.60051 [643] train-logloss:0.60076 [644] train-logloss:0.60053 [645] train-logloss:0.60062 [646] train-logloss:0.60055 [647] train-logloss:0.60115 [648] train-logloss:0.60093 [649] train-logloss:0.60052 [650] train-logloss:0.60054 [651] train-logloss:0.60064 [652] train-logloss:0.60126 [653] train-logloss:0.60113 [654] train-logloss:0.60096 [655] train-logloss:0.60108 [656] train-logloss:0.60129 [657] train-logloss:0.60122 [658] train-logloss:0.60162 [659] train-logloss:0.60155 [660] train-logloss:0.60163 [661] train-logloss:0.60166 [662] train-logloss:0.60170 [663] train-logloss:0.60317 [664] train-logloss:0.60358 [665] train-logloss:0.60430 [666] train-logloss:0.60406 [667] train-logloss:0.60419 [668] train-logloss:0.60394 [669] train-logloss:0.60423 [670] train-logloss:0.60479 [671] train-logloss:0.60492 [672] train-logloss:0.60493 [673] train-logloss:0.60458 [674] train-logloss:0.60413 [675] train-logloss:0.60381 [676] train-logloss:0.60380 [677] train-logloss:0.60329 [678] train-logloss:0.60327 [679] train-logloss:0.60334 [680] train-logloss:0.60352 [681] train-logloss:0.60370 [682] train-logloss:0.60361 [683] train-logloss:0.60389 [684] train-logloss:0.60361 [685] train-logloss:0.60419 [686] train-logloss:0.60502 [687] train-logloss:0.60500 [688] train-logloss:0.60507 [689] train-logloss:0.60466 [690] train-logloss:0.60461 [691] train-logloss:0.60461 [692] train-logloss:0.60505 [693] train-logloss:0.60527 [694] train-logloss:0.60532 [695] train-logloss:0.60534 [696] train-logloss:0.60565 [697] train-logloss:0.60592 [698] train-logloss:0.60541 [699] train-logloss:0.60534 [700] train-logloss:0.60509 [701] train-logloss:0.60491 [702] train-logloss:0.60503 [703] train-logloss:0.60507 [704] train-logloss:0.60564 [705] train-logloss:0.60548 [706] train-logloss:0.60611 [707] train-logloss:0.60603 [708] train-logloss:0.60553 [709] train-logloss:0.60522 [710] train-logloss:0.60433 [711] train-logloss:0.60431 [712] train-logloss:0.60441 [713] train-logloss:0.60433 [714] train-logloss:0.60479 [715] train-logloss:0.60464 [716] train-logloss:0.60522 [717] train-logloss:0.60565 [718] train-logloss:0.60521 [719] train-logloss:0.60472 [720] train-logloss:0.60502 [721] train-logloss:0.60541 [722] train-logloss:0.60551 [723] train-logloss:0.60531 [724] train-logloss:0.60464 [725] train-logloss:0.60453 [726] train-logloss:0.60449 [727] train-logloss:0.60426 [728] train-logloss:0.60378 [729] train-logloss:0.60523 [730] train-logloss:0.60574 [731] train-logloss:0.60550 [732] train-logloss:0.60547 [733] train-logloss:0.60580 [734] train-logloss:0.60546 [735] train-logloss:0.60541 [736] train-logloss:0.60566 [737] train-logloss:0.60568 [738] train-logloss:0.60556 [739] train-logloss:0.60546 [740] train-logloss:0.60533 [741] train-logloss:0.60570 [742] train-logloss:0.60580 [743] train-logloss:0.60562 [744] train-logloss:0.60563 [745] train-logloss:0.60553 [746] train-logloss:0.60570 [747] train-logloss:0.60584 [748] train-logloss:0.60632 [749] train-logloss:0.60628 [750] train-logloss:0.60637 [751] train-logloss:0.60680 [752] train-logloss:0.60716 [753] train-logloss:0.60663 [754] train-logloss:0.60630 [755] train-logloss:0.60617 [756] train-logloss:0.60614 [757] train-logloss:0.60527 [758] train-logloss:0.60568 [759] train-logloss:0.60560 [760] train-logloss:0.60595 [761] train-logloss:0.60631 [762] train-logloss:0.60588 [763] train-logloss:0.60584 [764] train-logloss:0.60627 [765] train-logloss:0.60617 [766] train-logloss:0.60665 [767] train-logloss:0.60641 [768] train-logloss:0.60655 [769] train-logloss:0.60689 [770] train-logloss:0.60710 [771] train-logloss:0.60707 [772] train-logloss:0.60664 [773] train-logloss:0.60689 [774] train-logloss:0.60732 [775] train-logloss:0.60677 [776] train-logloss:0.60677 [777] train-logloss:0.60719 [778] train-logloss:0.60771 [779] train-logloss:0.60774 [780] train-logloss:0.60803 [781] train-logloss:0.60886 [782] train-logloss:0.60919 [783] train-logloss:0.60931 [784] train-logloss:0.60956 [785] train-logloss:0.60928 [786] train-logloss:0.60890 [787] train-logloss:0.60871 [788] train-logloss:0.60884 [789] train-logloss:0.60840 [790] train-logloss:0.60815 [791] train-logloss:0.60824 [792] train-logloss:0.60808 [793] train-logloss:0.60843 [794] train-logloss:0.60818 [795] train-logloss:0.60906 [796] train-logloss:0.60931 [797] train-logloss:0.60894 [798] train-logloss:0.60874 [799] train-logloss:0.60895 [800] train-logloss:0.60818 [801] train-logloss:0.60806 [802] train-logloss:0.60856 [803] train-logloss:0.60939 [804] train-logloss:0.60937 [805] train-logloss:0.60924 [806] train-logloss:0.60880 [807] train-logloss:0.60893 [808] train-logloss:0.60851 [809] train-logloss:0.60872 [810] train-logloss:0.60823 [811] train-logloss:0.60924 [812] train-logloss:0.60916 [813] train-logloss:0.60913 [814] train-logloss:0.60906 [815] train-logloss:0.60876 [816] train-logloss:0.60875 [817] train-logloss:0.60929 [818] train-logloss:0.60952 [819] train-logloss:0.60933 [820] train-logloss:0.60891 [821] train-logloss:0.60856 [822] train-logloss:0.60921 [823] train-logloss:0.60961 [824] train-logloss:0.60921 [825] train-logloss:0.60899 [826] train-logloss:0.60953 [827] train-logloss:0.61011 [828] train-logloss:0.60985 [829] train-logloss:0.60952 [830] train-logloss:0.60889 [831] train-logloss:0.60909 [832] train-logloss:0.60925 [833] train-logloss:0.60953 [834] train-logloss:0.60918 [835] train-logloss:0.60896 [836] train-logloss:0.60951 [837] train-logloss:0.60939 [838] train-logloss:0.60935 [839] train-logloss:0.60904 [840] train-logloss:0.60951 [841] train-logloss:0.61017 [842] train-logloss:0.61034 [843] train-logloss:0.61009 [844] train-logloss:0.61010 [845] train-logloss:0.61063 [846] train-logloss:0.61112 [847] train-logloss:0.61078 [848] train-logloss:0.61036 [849] train-logloss:0.61058 [850] train-logloss:0.61066 [851] train-logloss:0.61041 [852] train-logloss:0.61029 [853] train-logloss:0.60977 [854] train-logloss:0.60990 [855] train-logloss:0.60954 [856] train-logloss:0.60964 [857] train-logloss:0.60979 [858] train-logloss:0.60995 [859] train-logloss:0.60974 [860] train-logloss:0.60945 [861] train-logloss:0.60979 [862] train-logloss:0.61024 [863] train-logloss:0.61075 [864] train-logloss:0.61087 [865] train-logloss:0.61062 [866] train-logloss:0.61108 [867] train-logloss:0.61132 [868] train-logloss:0.61127 [869] train-logloss:0.61123 [870] train-logloss:0.61163 [871] train-logloss:0.61160 [872] train-logloss:0.61153 [873] train-logloss:0.61156 [874] train-logloss:0.61207 [875] train-logloss:0.61186 [876] train-logloss:0.61301 [877] train-logloss:0.61300 [878] train-logloss:0.61276 [879] train-logloss:0.61250 [880] train-logloss:0.61269 [881] train-logloss:0.61302 [882] train-logloss:0.61330 [883] train-logloss:0.61256 [884] train-logloss:0.61219 [885] train-logloss:0.61190 [886] train-logloss:0.61175 [887] train-logloss:0.61211 [888] train-logloss:0.61195 [889] train-logloss:0.61177 [890] train-logloss:0.61180 [891] train-logloss:0.61172 [892] train-logloss:0.61242 [893] train-logloss:0.61320 [894] train-logloss:0.61337 [895] train-logloss:0.61354 [896] train-logloss:0.61354 [897] train-logloss:0.61361 [898] train-logloss:0.61390 [899] train-logloss:0.61390 [900] train-logloss:0.61439 [901] train-logloss:0.61473 [902] train-logloss:0.61455 [903] train-logloss:0.61482 [904] train-logloss:0.61491 [905] train-logloss:0.61608 [906] train-logloss:0.61604 [907] train-logloss:0.61654 [908] train-logloss:0.61628 [909] train-logloss:0.61609 [910] train-logloss:0.61661 [911] train-logloss:0.61665 [912] train-logloss:0.61649 [913] train-logloss:0.61661 [914] train-logloss:0.61669 [915] train-logloss:0.61661 [916] train-logloss:0.61669 [917] train-logloss:0.61610 [918] train-logloss:0.61622 [919] train-logloss:0.61678 [920] train-logloss:0.61674 [921] train-logloss:0.61652 [922] train-logloss:0.61651 [923] train-logloss:0.61610 [924] train-logloss:0.61625 [925] train-logloss:0.61607 [926] train-logloss:0.61634 [927] train-logloss:0.61619 [928] train-logloss:0.61594 [929] train-logloss:0.61565 [930] train-logloss:0.61541 [931] train-logloss:0.61557 [932] train-logloss:0.61549 [933] train-logloss:0.61504 [934] train-logloss:0.61500 [935] train-logloss:0.61530 [936] train-logloss:0.61608 [937] train-logloss:0.61571 [938] train-logloss:0.61553 [939] train-logloss:0.61567 [940] train-logloss:0.61549 [941] train-logloss:0.61562 [942] train-logloss:0.61594 [943] train-logloss:0.61611 [944] train-logloss:0.61579 [945] train-logloss:0.61624 [946] train-logloss:0.61548 [947] train-logloss:0.61579 [948] train-logloss:0.61570 [949] train-logloss:0.61623 [950] train-logloss:0.61624 [951] train-logloss:0.61583 [952] train-logloss:0.61581 [953] train-logloss:0.61566 [954] train-logloss:0.61573 [955] train-logloss:0.61590 [956] train-logloss:0.61602 [957] train-logloss:0.61595 [958] train-logloss:0.61607 [959] train-logloss:0.61633 [960] train-logloss:0.61581 [961] train-logloss:0.61588 [962] train-logloss:0.61593 [963] train-logloss:0.61603 [964] train-logloss:0.61550 [965] train-logloss:0.61553 [966] train-logloss:0.61595 [967] train-logloss:0.61583 [968] train-logloss:0.61558 [969] train-logloss:0.61575 [970] train-logloss:0.61599 [971] train-logloss:0.61579 [972] train-logloss:0.61623 [973] train-logloss:0.61584 [974] train-logloss:0.61529 [975] train-logloss:0.61515 [976] train-logloss:0.61492 [977] train-logloss:0.61465 [978] train-logloss:0.61481 [979] train-logloss:0.61462 [980] train-logloss:0.61420 [981] train-logloss:0.61395 [982] train-logloss:0.61406 [983] train-logloss:0.61360 [984] train-logloss:0.61340 [985] train-logloss:0.61345 [986] train-logloss:0.61342 [987] train-logloss:0.61302 [988] train-logloss:0.61285 [989] train-logloss:0.61300 [990] train-logloss:0.61285 [991] train-logloss:0.61253 [992] train-logloss:0.61262 [993] train-logloss:0.61249 [994] train-logloss:0.61250 [995] train-logloss:0.61245 [996] train-logloss:0.61260 [997] train-logloss:0.61251 [998] train-logloss:0.61306 [999] train-logloss:0.61383 [1000] train-logloss:0.61397 [1001] train-logloss:0.61455 [1002] train-logloss:0.61472 [1003] train-logloss:0.61494 [1004] train-logloss:0.61473 [1005] train-logloss:0.61453 [1006] train-logloss:0.61421 [1007] train-logloss:0.61468 [1008] train-logloss:0.61430 [1009] train-logloss:0.61480 [1010] train-logloss:0.61528 [1011] train-logloss:0.61538 [1012] train-logloss:0.61550 [1013] train-logloss:0.61584 [1014] train-logloss:0.61590 [1015] train-logloss:0.61605 [1016] train-logloss:0.61570 [1017] train-logloss:0.61538 [1018] train-logloss:0.61533 [1019] train-logloss:0.61534 [1020] train-logloss:0.61527 [1021] train-logloss:0.61568 [1022] train-logloss:0.61605 [1023] train-logloss:0.61607 [1024] train-logloss:0.61542 [1025] train-logloss:0.61558 [1026] train-logloss:0.61556 [1027] train-logloss:0.61553 [1028] train-logloss:0.61594 [1029] train-logloss:0.61582 [1030] train-logloss:0.61594 [1031] train-logloss:0.61604 [1032] train-logloss:0.61639 [1033] train-logloss:0.61661 [1034] train-logloss:0.61689 [1035] train-logloss:0.61686 [1036] train-logloss:0.61699 [1037] train-logloss:0.61677 [1038] train-logloss:0.61704 [1039] train-logloss:0.61679 [1040] train-logloss:0.61639 [1041] train-logloss:0.61661 [1042] train-logloss:0.61671 [1043] train-logloss:0.61707 [1044] train-logloss:0.61705 [1045] train-logloss:0.61700 [1046] train-logloss:0.61702 [1047] train-logloss:0.61658 [1048] train-logloss:0.61620 [1049] train-logloss:0.61636 [1050] train-logloss:0.61652 [1051] train-logloss:0.61664 [1052] train-logloss:0.61641 [1053] train-logloss:0.61597 [1054] train-logloss:0.61604 [1055] train-logloss:0.61616 [1056] train-logloss:0.61564 [1057] train-logloss:0.61594 [1058] train-logloss:0.61626 [1059] train-logloss:0.61589 [1060] train-logloss:0.61572 [1061] train-logloss:0.61588 [1062] train-logloss:0.61573 [1063] train-logloss:0.61585 [1064] train-logloss:0.61614 [1065] train-logloss:0.61631 [1066] train-logloss:0.61634 [1067] train-logloss:0.61673 [1068] train-logloss:0.61688 [1069] train-logloss:0.61712 [1070] train-logloss:0.61709 [1071] train-logloss:0.61696 [1072] train-logloss:0.61791 [1073] train-logloss:0.61820 [1074] train-logloss:0.61861 [1075] train-logloss:0.61900 [1076] train-logloss:0.61834 [1077] train-logloss:0.61826 [1078] train-logloss:0.61791 [1079] train-logloss:0.61792 [1080] train-logloss:0.61756 [1081] train-logloss:0.61741 [1082] train-logloss:0.61676 [1083] train-logloss:0.61664 [1084] train-logloss:0.61645 [1085] train-logloss:0.61573 [1086] train-logloss:0.61622 [1087] train-logloss:0.61672 [1088] train-logloss:0.61692 [1089] train-logloss:0.61723 [1090] train-logloss:0.61650 [1091] train-logloss:0.61586 [1092] train-logloss:0.61588 [1093] train-logloss:0.61634 [1094] train-logloss:0.61671 [1095] train-logloss:0.61643 [1096] train-logloss:0.61593 [1097] train-logloss:0.61576 [1098] train-logloss:0.61546 [1099] train-logloss:0.61495 [1100] train-logloss:0.61523 [1101] train-logloss:0.61544 [1102] train-logloss:0.61590 [1103] train-logloss:0.61593 [1104] train-logloss:0.61564 [1105] train-logloss:0.61594 [1106] train-logloss:0.61570 [1107] train-logloss:0.61605 [1108] train-logloss:0.61652 [1109] train-logloss:0.61626 [1110] train-logloss:0.61620 [1111] train-logloss:0.61637 [1112] train-logloss:0.61701 [1113] train-logloss:0.61639 [1114] train-logloss:0.61580 [1115] train-logloss:0.61562 [1116] train-logloss:0.61616 [1117] train-logloss:0.61612 [1118] train-logloss:0.61586 [1119] train-logloss:0.61648 [1120] train-logloss:0.61633 [1121] train-logloss:0.61633 [1122] train-logloss:0.61712 [1123] train-logloss:0.61759 [1124] train-logloss:0.61791 [1125] train-logloss:0.61720 [1126] train-logloss:0.61710 [1127] train-logloss:0.61720 [1128] train-logloss:0.61675 [1129] train-logloss:0.61666 [1130] train-logloss:0.61628 [1131] train-logloss:0.61601 [1132] train-logloss:0.61628 [1133] train-logloss:0.61608 [1134] train-logloss:0.61602 [1135] train-logloss:0.61527 [1136] train-logloss:0.61503 [1137] train-logloss:0.61488 [1138] train-logloss:0.61479 [1139] train-logloss:0.61432 [1140] train-logloss:0.61408 [1141] train-logloss:0.61431 [1142] train-logloss:0.61440 [1143] train-logloss:0.61479 [1144] train-logloss:0.61484 [1145] train-logloss:0.61439 [1146] train-logloss:0.61438 [1147] train-logloss:0.61478 [1148] train-logloss:0.61462 [1149] train-logloss:0.61460 [1150] train-logloss:0.61440 [1151] train-logloss:0.61477 [1152] train-logloss:0.61534 [1153] train-logloss:0.61534 [1154] train-logloss:0.61508 [1155] train-logloss:0.61530 [1156] train-logloss:0.61556 [1157] train-logloss:0.61549 [1158] train-logloss:0.61548 [1159] train-logloss:0.61577 [1160] train-logloss:0.61552 [1161] train-logloss:0.61577 [1162] train-logloss:0.61566 [1163] train-logloss:0.61610 [1164] train-logloss:0.61608 [1165] train-logloss:0.61612 [1166] train-logloss:0.61637 [1167] train-logloss:0.61638 [1168] train-logloss:0.61655 [1169] train-logloss:0.61646 [1170] train-logloss:0.61632 [1171] train-logloss:0.61654 [1172] train-logloss:0.61617 [1173] train-logloss:0.61593 [1174] train-logloss:0.61582 [1175] train-logloss:0.61604 [1176] train-logloss:0.61593 [1177] train-logloss:0.61602 [1178] train-logloss:0.61590 [1179] train-logloss:0.61559 [1180] train-logloss:0.61554 [1181] train-logloss:0.61582 [1182] train-logloss:0.61582 [1183] train-logloss:0.61576 [1184] train-logloss:0.61592 [1185] train-logloss:0.61615 [1186] train-logloss:0.61567 [1187] train-logloss:0.61549 [1188] train-logloss:0.61548 [1189] train-logloss:0.61619 [1190] train-logloss:0.61626 [1191] train-logloss:0.61679 [1192] train-logloss:0.61673 [1193] train-logloss:0.61731 [1194] train-logloss:0.61746 [1195] train-logloss:0.61761 [1196] train-logloss:0.61761 [1197] train-logloss:0.61751 [1198] train-logloss:0.61805 [1199] train-logloss:0.61834 [1200] train-logloss:0.61812 [1201] train-logloss:0.61811 [1202] train-logloss:0.61823 [1203] train-logloss:0.61798 [1204] train-logloss:0.61777 [1205] train-logloss:0.61818 [1206] train-logloss:0.61818 [1207] train-logloss:0.61824 [1208] train-logloss:0.61831 [1209] train-logloss:0.61811 [1210] train-logloss:0.61812 [1211] train-logloss:0.61833 [1212] train-logloss:0.61835 [1213] train-logloss:0.61837 [1214] train-logloss:0.61841 [1215] train-logloss:0.61840 [1216] train-logloss:0.61836 [1217] train-logloss:0.61805 [1218] train-logloss:0.61808 [1219] train-logloss:0.61835 [1220] train-logloss:0.61845 [1221] train-logloss:0.61870 [1222] train-logloss:0.61850 [1223] train-logloss:0.61854 [1224] train-logloss:0.61863 [1225] train-logloss:0.61899 [1226] train-logloss:0.61892 [1227] train-logloss:0.61846 [1228] train-logloss:0.61747 [1229] train-logloss:0.61741 [1230] train-logloss:0.61723 [1231] train-logloss:0.61720 [1232] train-logloss:0.61760 [1233] train-logloss:0.61721 [1234] train-logloss:0.61750 [1235] train-logloss:0.61749 [1236] train-logloss:0.61791 [1237] train-logloss:0.61784 [1238] train-logloss:0.61782 [1239] train-logloss:0.61761 [1240] train-logloss:0.61788 [1241] train-logloss:0.61803 [1242] train-logloss:0.61798 [1243] train-logloss:0.61792 [1244] train-logloss:0.61842 [1245] train-logloss:0.61798 [1246] train-logloss:0.61819 [1247] train-logloss:0.61888 [1248] train-logloss:0.61904 [1249] train-logloss:0.61933 [1250] train-logloss:0.61934 [1251] train-logloss:0.61989 [1252] train-logloss:0.61986 [1253] train-logloss:0.61987 [1254] train-logloss:0.62028 [1255] train-logloss:0.62067 [1256] train-logloss:0.62057 [1257] train-logloss:0.62052 [1258] train-logloss:0.62099 [1259] train-logloss:0.62093 [1260] train-logloss:0.62084 [1261] train-logloss:0.62128 [1262] train-logloss:0.62201 [1263] train-logloss:0.62241 [1264] train-logloss:0.62245 [1265] train-logloss:0.62252 [1266] train-logloss:0.62243 [1267] train-logloss:0.62244 [1268] train-logloss:0.62245 [1269] train-logloss:0.62248 [1270] train-logloss:0.62249 [1271] train-logloss:0.62313 [1272] train-logloss:0.62362 [1273] train-logloss:0.62363 [1274] train-logloss:0.62333 [1275] train-logloss:0.62393 [1276] train-logloss:0.62373 [1277] train-logloss:0.62412 [1278] train-logloss:0.62350 [1279] train-logloss:0.62284 [1280] train-logloss:0.62233 [1281] train-logloss:0.62190 [1282] train-logloss:0.62219 [1283] train-logloss:0.62188 [1284] train-logloss:0.62152 [1285] train-logloss:0.62160 [1286] train-logloss:0.62161 [1287] train-logloss:0.62144 [1288] train-logloss:0.62174 [1289] train-logloss:0.62205 [1290] train-logloss:0.62258 [1291] train-logloss:0.62214 [1292] train-logloss:0.62211 [1293] train-logloss:0.62220 [1294] train-logloss:0.62162 [1295] train-logloss:0.62190 [1296] train-logloss:0.62167 [1297] train-logloss:0.62130 [1298] train-logloss:0.62131 [1299] train-logloss:0.62069 [1300] train-logloss:0.62077 [1301] train-logloss:0.62085 [1302] train-logloss:0.62065 [1303] train-logloss:0.62093 [1304] train-logloss:0.62098 [1305] train-logloss:0.62133 [1306] train-logloss:0.62180 [1307] train-logloss:0.62205 [1308] train-logloss:0.62153 [1309] train-logloss:0.62135 [1310] train-logloss:0.62109 [1311] train-logloss:0.62135 [1312] train-logloss:0.62126 [1313] train-logloss:0.62143 [1314] train-logloss:0.62136 [1315] train-logloss:0.62137 [1316] train-logloss:0.62184 [1317] train-logloss:0.62164 [1318] train-logloss:0.62177 [1319] train-logloss:0.62198 [1320] train-logloss:0.62296 [1321] train-logloss:0.62289 [1322] train-logloss:0.62195 [1323] train-logloss:0.62224 [1324] train-logloss:0.62239 [1325] train-logloss:0.62226 [1326] train-logloss:0.62231 [1327] train-logloss:0.62226 [1328] train-logloss:0.62208 [1329] train-logloss:0.62160 [1330] train-logloss:0.62211 [1331] train-logloss:0.62208 [1332] train-logloss:0.62155 [1333] train-logloss:0.62138 [1334] train-logloss:0.62145 [1335] train-logloss:0.62141 [1336] train-logloss:0.62144 [1337] train-logloss:0.62210 [1338] train-logloss:0.62197 [1339] train-logloss:0.62169 [1340] train-logloss:0.62142 [1341] train-logloss:0.62128 [1342] train-logloss:0.62129 [1343] train-logloss:0.62180 [1344] train-logloss:0.62237 [1345] train-logloss:0.62215 [1346] train-logloss:0.62250 [1347] train-logloss:0.62197 [1348] train-logloss:0.62196 [1349] train-logloss:0.62166 [1350] train-logloss:0.62169 [1351] train-logloss:0.62127 [1352] train-logloss:0.62157 [1353] train-logloss:0.62163 [1354] train-logloss:0.62116 [1355] train-logloss:0.62129 [1356] train-logloss:0.62164 [1357] train-logloss:0.62179 [1358] train-logloss:0.62193 [1359] train-logloss:0.62255 [1360] train-logloss:0.62253 [1361] train-logloss:0.62186 [1362] train-logloss:0.62189 [1363] train-logloss:0.62179 [1364] train-logloss:0.62182 [1365] train-logloss:0.62170 [1366] train-logloss:0.62147 [1367] train-logloss:0.62138 [1368] train-logloss:0.62146 [1369] train-logloss:0.62147 [1370] train-logloss:0.62220 [1371] train-logloss:0.62200 [1372] train-logloss:0.62165 [1373] train-logloss:0.62146 [1374] train-logloss:0.62162 [1375] train-logloss:0.62167 [1376] train-logloss:0.62154 [1377] train-logloss:0.62150 [1378] train-logloss:0.62163 [1379] train-logloss:0.62158 [1380] train-logloss:0.62126 [1381] train-logloss:0.62109 [1382] train-logloss:0.62034 [1383] train-logloss:0.62063 [1384] train-logloss:0.61993 [1385] train-logloss:0.62037 [1386] train-logloss:0.62061 [1387] train-logloss:0.62109 [1388] train-logloss:0.62067 [1389] train-logloss:0.62111 [1390] train-logloss:0.62117 [1391] train-logloss:0.62114 [1392] train-logloss:0.62100 [1393] train-logloss:0.62126 [1394] train-logloss:0.62121 [1395] train-logloss:0.62034 [1396] train-logloss:0.62015 [1397] train-logloss:0.61977 [1398] train-logloss:0.61984 [1399] train-logloss:0.61980 [1400] train-logloss:0.62001 [1401] train-logloss:0.62021 [1402] train-logloss:0.61998 [1403] train-logloss:0.61985 [1404] train-logloss:0.62000 [1405] train-logloss:0.61983 [1406] train-logloss:0.62019 [1407] train-logloss:0.62021 [1408] train-logloss:0.62011 [1409] train-logloss:0.62013 [1410] train-logloss:0.62020 [1411] train-logloss:0.62035 [1412] train-logloss:0.62013 [1413] train-logloss:0.62051 [1414] train-logloss:0.62023 [1415] train-logloss:0.61969 [1416] train-logloss:0.61964 [1417] train-logloss:0.62012 [1418] train-logloss:0.61977 [1419] train-logloss:0.62004 [1420] train-logloss:0.61985 [1421] train-logloss:0.62022 [1422] train-logloss:0.62018 [1423] train-logloss:0.62115 [1424] train-logloss:0.62131 [1425] train-logloss:0.62105 [1426] train-logloss:0.62091 [1427] train-logloss:0.62092 [1428] train-logloss:0.62157 [1429] train-logloss:0.62142 [1430] train-logloss:0.62116 [1431] train-logloss:0.62139 [1432] train-logloss:0.62133 [1433] train-logloss:0.62163 [1434] train-logloss:0.62205 [1435] train-logloss:0.62173 [1436] train-logloss:0.62203 [1437] train-logloss:0.62223 [1438] train-logloss:0.62139 [1439] train-logloss:0.62153 [1440] train-logloss:0.62179 [1441] train-logloss:0.62182 [1442] train-logloss:0.62184 [1443] train-logloss:0.62181 [1444] train-logloss:0.62181 [1445] train-logloss:0.62172 [1446] train-logloss:0.62191 [1447] train-logloss:0.62234 [1448] train-logloss:0.62249 [1449] train-logloss:0.62289 [1450] train-logloss:0.62289 [1451] train-logloss:0.62240 [1452] train-logloss:0.62203 [1453] train-logloss:0.62179 [1454] train-logloss:0.62148 [1455] train-logloss:0.62208 [1456] train-logloss:0.62211 [1457] train-logloss:0.62210 [1458] train-logloss:0.62212 [1459] train-logloss:0.62243 [1460] train-logloss:0.62176 [1461] train-logloss:0.62173 [1462] train-logloss:0.62273 [1463] train-logloss:0.62274 [1464] train-logloss:0.62264 [1465] train-logloss:0.62251 [1466] train-logloss:0.62216 [1467] train-logloss:0.62178 [1468] train-logloss:0.62177 [1469] train-logloss:0.62123 [1470] train-logloss:0.62158 [1471] train-logloss:0.62149 [1472] train-logloss:0.62120 [1473] train-logloss:0.62089 [1474] train-logloss:0.62088 [1475] train-logloss:0.62042 [1476] train-logloss:0.62060 [1477] train-logloss:0.62094 [1478] train-logloss:0.62070 [1479] train-logloss:0.62138 [1480] train-logloss:0.62191 [1481] train-logloss:0.62263 [1482] train-logloss:0.62314 [1483] train-logloss:0.62297 [1484] train-logloss:0.62304 [1485] train-logloss:0.62302 [1486] train-logloss:0.62320 [1487] train-logloss:0.62371 [1488] train-logloss:0.62408 [1489] train-logloss:0.62425 [1490] train-logloss:0.62483 [1491] train-logloss:0.62470 [1492] train-logloss:0.62468 [1493] train-logloss:0.62445 [1494] train-logloss:0.62364 [1495] train-logloss:0.62281 [1496] train-logloss:0.62235 [1497] train-logloss:0.62246 [1498] train-logloss:0.62299 [1499] train-logloss:0.62292 [1500] train-logloss:0.62292 [1501] train-logloss:0.62397 [1502] train-logloss:0.62421 [1503] train-logloss:0.62474 [1504] train-logloss:0.62482 [1505] train-logloss:0.62449 [1506] train-logloss:0.62440 [1507] train-logloss:0.62389 [1508] train-logloss:0.62370 [1509] train-logloss:0.62357 [1510] train-logloss:0.62330 [1511] train-logloss:0.62317 [1512] train-logloss:0.62402 [1513] train-logloss:0.62354 [1514] train-logloss:0.62335 [1515] train-logloss:0.62294 [1516] train-logloss:0.62292 [1517] train-logloss:0.62292 [1518] train-logloss:0.62291 [1519] train-logloss:0.62241 [1520] train-logloss:0.62281 [1521] train-logloss:0.62292 [1522] train-logloss:0.62264 [1523] train-logloss:0.62284 [1524] train-logloss:0.62344 [1525] train-logloss:0.62342 [1526] train-logloss:0.62341 [1527] train-logloss:0.62322 [1528] train-logloss:0.62380 [1529] train-logloss:0.62396 [1530] train-logloss:0.62362 [1531] train-logloss:0.62355 [1532] train-logloss:0.62339 [1533] train-logloss:0.62331 [1534] train-logloss:0.62320 [1535] train-logloss:0.62286 [1536] train-logloss:0.62317 [1537] train-logloss:0.62443 [1538] train-logloss:0.62493 [1539] train-logloss:0.62527 [1540] train-logloss:0.62483 [1541] train-logloss:0.62509 [1542] train-logloss:0.62480 [1543] train-logloss:0.62506 [1544] train-logloss:0.62635 [1545] train-logloss:0.62708 [1546] train-logloss:0.62721 [1547] train-logloss:0.62686 [1548] train-logloss:0.62723 [1549] train-logloss:0.62748 [1550] train-logloss:0.62745 [1551] train-logloss:0.62808 [1552] train-logloss:0.62749 [1553] train-logloss:0.62703 [1554] train-logloss:0.62705 [1555] train-logloss:0.62714 [1556] train-logloss:0.62733 [1557] train-logloss:0.62796 [1558] train-logloss:0.62826 [1559] train-logloss:0.62826 [1560] train-logloss:0.62829 [1561] train-logloss:0.62839 [1562] train-logloss:0.62812 [1563] train-logloss:0.62794 [1564] train-logloss:0.62794 [1565] train-logloss:0.62733 [1566] train-logloss:0.62713 [1567] train-logloss:0.62760 [1568] train-logloss:0.62765 [1569] train-logloss:0.62734 [1570] train-logloss:0.62715 [1571] train-logloss:0.62716 [1572] train-logloss:0.62697 [1573] train-logloss:0.62685 [1574] train-logloss:0.62616 [1575] train-logloss:0.62604 [1576] train-logloss:0.62584 [1577] train-logloss:0.62552 [1578] train-logloss:0.62563 [1579] train-logloss:0.62520 [1580] train-logloss:0.62522 [1581] train-logloss:0.62523 [1582] train-logloss:0.62511 [1583] train-logloss:0.62505 [1584] train-logloss:0.62541 [1585] train-logloss:0.62588 [1586] train-logloss:0.62578 [1587] train-logloss:0.62553 [1588] train-logloss:0.62557 [1589] train-logloss:0.62467 [1590] train-logloss:0.62473 [1591] train-logloss:0.62508 [1592] train-logloss:0.62497 [1593] train-logloss:0.62453 [1594] train-logloss:0.62384 [1595] train-logloss:0.62420 [1596] train-logloss:0.62446 [1597] train-logloss:0.62479 [1598] train-logloss:0.62449 [1599] train-logloss:0.62449 [1600] train-logloss:0.62423 [1601] train-logloss:0.62411 [1602] train-logloss:0.62388 [1603] train-logloss:0.62411 [1604] train-logloss:0.62443 [1605] train-logloss:0.62469 [1606] train-logloss:0.62507 [1607] train-logloss:0.62572 [1608] train-logloss:0.62554 [1609] train-logloss:0.62555 [1610] train-logloss:0.62558 [1611] train-logloss:0.62570 [1612] train-logloss:0.62653 [1613] train-logloss:0.62706 [1614] train-logloss:0.62691 [1615] train-logloss:0.62700 [1616] train-logloss:0.62672 [1617] train-logloss:0.62688 [1618] train-logloss:0.62700 [1619] train-logloss:0.62699 [1620] train-logloss:0.62742 [1621] train-logloss:0.62767 [1622] train-logloss:0.62734 [1623] train-logloss:0.62717 [1624] train-logloss:0.62756 [1625] train-logloss:0.62705 [1626] train-logloss:0.62695 [1627] train-logloss:0.62633 [1628] train-logloss:0.62619 [1629] train-logloss:0.62691 [1630] train-logloss:0.62652 [1631] train-logloss:0.62642 [1632] train-logloss:0.62627 [1633] train-logloss:0.62633 [1634] train-logloss:0.62699 [1635] train-logloss:0.62705 [1636] train-logloss:0.62704 [1637] train-logloss:0.62736 [1638] train-logloss:0.62731 [1639] train-logloss:0.62708 [1640] train-logloss:0.62668 [1641] train-logloss:0.62663 [1642] train-logloss:0.62660 [1643] train-logloss:0.62673 [1644] train-logloss:0.62695 [1645] train-logloss:0.62719 [1646] train-logloss:0.62804 [1647] train-logloss:0.62804 [1648] train-logloss:0.62861 [1649] train-logloss:0.62823 [1650] train-logloss:0.62817 [1651] train-logloss:0.62793 [1652] train-logloss:0.62743 [1653] train-logloss:0.62737 [1654] train-logloss:0.62774 [1655] train-logloss:0.62777 [1656] train-logloss:0.62778 [1657] train-logloss:0.62840 [1658] train-logloss:0.62773 [1659] train-logloss:0.62748 [1660] train-logloss:0.62749 [1661] train-logloss:0.62737 [1662] train-logloss:0.62715 [1663] train-logloss:0.62719 [1664] train-logloss:0.62730 [1665] train-logloss:0.62723 [1666] train-logloss:0.62722 [1667] train-logloss:0.62713 [1668] train-logloss:0.62705 [1669] train-logloss:0.62717 [1670] train-logloss:0.62800 [1671] train-logloss:0.62689 [1672] train-logloss:0.62649 [1673] train-logloss:0.62711 [1674] train-logloss:0.62687 [1675] train-logloss:0.62650 [1676] train-logloss:0.62633 [1677] train-logloss:0.62623 [1678] train-logloss:0.62646 [1679] train-logloss:0.62636 [1680] train-logloss:0.62612 [1681] train-logloss:0.62655 [1682] train-logloss:0.62635 [1683] train-logloss:0.62605 [1684] train-logloss:0.62646 [1685] train-logloss:0.62708 [1686] train-logloss:0.62742 [1687] train-logloss:0.62785 [1688] train-logloss:0.62789 [1689] train-logloss:0.62822 [1690] train-logloss:0.62799 [1691] train-logloss:0.62868 [1692] train-logloss:0.62901 [1693] train-logloss:0.62901 [1694] train-logloss:0.62914 [1695] train-logloss:0.62889 [1696] train-logloss:0.62889 [1697] train-logloss:0.62943 [1698] train-logloss:0.63000 [1699] train-logloss:0.63004 [1700] train-logloss:0.63026 [1701] train-logloss:0.63075 [1702] train-logloss:0.63076 [1703] train-logloss:0.63148 [1704] train-logloss:0.63152 [1705] train-logloss:0.63151 [1706] train-logloss:0.63170 [1707] train-logloss:0.63178 [1708] train-logloss:0.63160 [1709] train-logloss:0.63154 [1710] train-logloss:0.63216 [1711] train-logloss:0.63176 [1712] train-logloss:0.63144 [1713] train-logloss:0.63144 [1714] train-logloss:0.63135 [1715] train-logloss:0.63146 [1716] train-logloss:0.63145 [1717] train-logloss:0.63156 [1718] train-logloss:0.63085 [1719] train-logloss:0.63143 [1720] train-logloss:0.63115 [1721] train-logloss:0.63196 [1722] train-logloss:0.63176 [1723] train-logloss:0.63173 [1724] train-logloss:0.63226 [1725] train-logloss:0.63247 [1726] train-logloss:0.63249 [1727] train-logloss:0.63195 [1728] train-logloss:0.63201 [1729] train-logloss:0.63176 [1730] train-logloss:0.63183 [1731] train-logloss:0.63172 [1732] train-logloss:0.63126 [1733] train-logloss:0.63168 [1734] train-logloss:0.63187 [1735] train-logloss:0.63190 [1736] train-logloss:0.63153 [1737] train-logloss:0.63155 [1738] train-logloss:0.63142 [1739] train-logloss:0.63193 [1740] train-logloss:0.63273 [1741] train-logloss:0.63286 [1742] train-logloss:0.63302 [1743] train-logloss:0.63290 [1744] train-logloss:0.63289 [1745] train-logloss:0.63304 [1746] train-logloss:0.63250 [1747] train-logloss:0.63258 [1748] train-logloss:0.63193 [1749] train-logloss:0.63185 [1750] train-logloss:0.63220 [1751] train-logloss:0.63252 [1752] train-logloss:0.63256 [1753] train-logloss:0.63246 [1754] train-logloss:0.63227 [1755] train-logloss:0.63293 [1756] train-logloss:0.63271 [1757] train-logloss:0.63324 [1758] train-logloss:0.63333 [1759] train-logloss:0.63328 [1760] train-logloss:0.63319 [1761] train-logloss:0.63320 [1762] train-logloss:0.63344 [1763] train-logloss:0.63367 [1764] train-logloss:0.63343 [1765] train-logloss:0.63387 [1766] train-logloss:0.63410 [1767] train-logloss:0.63494 [1768] train-logloss:0.63479 [1769] train-logloss:0.63492 [1770] train-logloss:0.63518 [1771] train-logloss:0.63433 [1772] train-logloss:0.63369 [1773] train-logloss:0.63367 [1774] train-logloss:0.63371 [1775] train-logloss:0.63405 [1776] train-logloss:0.63410 [1777] train-logloss:0.63479 [1778] train-logloss:0.63420 [1779] train-logloss:0.63421 [1780] train-logloss:0.63344 [1781] train-logloss:0.63337 [1782] train-logloss:0.63343 [1783] train-logloss:0.63341 [1784] train-logloss:0.63357 [1785] train-logloss:0.63359 [1786] train-logloss:0.63375 [1787] train-logloss:0.63367 [1788] train-logloss:0.63314 [1789] train-logloss:0.63308 [1790] train-logloss:0.63310 [1791] train-logloss:0.63399 [1792] train-logloss:0.63392 [1793] train-logloss:0.63406 [1794] train-logloss:0.63405 [1795] train-logloss:0.63456 [1796] train-logloss:0.63486 [1797] train-logloss:0.63499 [1798] train-logloss:0.63507 [1799] train-logloss:0.63509 [1800] train-logloss:0.63491 [1801] train-logloss:0.63487 [1802] train-logloss:0.63536 [1803] train-logloss:0.63584 [1804] train-logloss:0.63591 [1805] train-logloss:0.63588 [1806] train-logloss:0.63546 [1807] train-logloss:0.63529 [1808] train-logloss:0.63565 [1809] train-logloss:0.63558 [1810] train-logloss:0.63572 [1811] train-logloss:0.63561 [1812] train-logloss:0.63598 [1813] train-logloss:0.63634 [1814] train-logloss:0.63634 [1815] train-logloss:0.63663 [1816] train-logloss:0.63615 [1817] train-logloss:0.63646 [1818] train-logloss:0.63635 [1819] train-logloss:0.63620 [1820] train-logloss:0.63593 [1821] train-logloss:0.63538 [1822] train-logloss:0.63517 [1823] train-logloss:0.63479 [1824] train-logloss:0.63480 [1825] train-logloss:0.63417 [1826] train-logloss:0.63417 [1827] train-logloss:0.63357 [1828] train-logloss:0.63291 [1829] train-logloss:0.63237 [1830] train-logloss:0.63229 [1831] train-logloss:0.63239 [1832] train-logloss:0.63236 [1833] train-logloss:0.63249 [1834] train-logloss:0.63265 [1835] train-logloss:0.63263 [1836] train-logloss:0.63264 [1837] train-logloss:0.63256 [1838] train-logloss:0.63256 [1839] train-logloss:0.63252 [1840] train-logloss:0.63264 [1841] train-logloss:0.63257 [1842] train-logloss:0.63266 [1843] train-logloss:0.63267 [1844] train-logloss:0.63223 [1845] train-logloss:0.63223 [1846] train-logloss:0.63218 [1847] train-logloss:0.63234 [1848] train-logloss:0.63234 [1849] train-logloss:0.63235 [1850] train-logloss:0.63175 [1851] train-logloss:0.63204 [1852] train-logloss:0.63210 [1853] train-logloss:0.63177 [1854] train-logloss:0.63243 [1855] train-logloss:0.63226 [1856] train-logloss:0.63271 [1857] train-logloss:0.63206 [1858] train-logloss:0.63206 [1859] train-logloss:0.63191 [1860] train-logloss:0.63220 [1861] train-logloss:0.63236 [1862] train-logloss:0.63214 [1863] train-logloss:0.63248 [1864] train-logloss:0.63216 [1865] train-logloss:0.63245 [1866] train-logloss:0.63247 [1867] train-logloss:0.63262 [1868] train-logloss:0.63261 [1869] train-logloss:0.63266 [1870] train-logloss:0.63278 [1871] train-logloss:0.63256 [1872] train-logloss:0.63322 [1873] train-logloss:0.63320 [1874] train-logloss:0.63290 [1875] train-logloss:0.63291 [1876] train-logloss:0.63290 [1877] train-logloss:0.63275 [1878] train-logloss:0.63277 [1879] train-logloss:0.63280 [1880] train-logloss:0.63254 [1881] train-logloss:0.63225 [1882] train-logloss:0.63286 [1883] train-logloss:0.63271 [1884] train-logloss:0.63270 [1885] train-logloss:0.63268 [1886] train-logloss:0.63268 [1887] train-logloss:0.63276 [1888] train-logloss:0.63250 [1889] train-logloss:0.63276 [1890] train-logloss:0.63270 [1891] train-logloss:0.63247 [1892] train-logloss:0.63222 [1893] train-logloss:0.63252 [1894] train-logloss:0.63280 [1895] train-logloss:0.63284 [1896] train-logloss:0.63253 [1897] train-logloss:0.63241 [1898] train-logloss:0.63218 [1899] train-logloss:0.63219 [1900] train-logloss:0.63192 [1901] train-logloss:0.63223 [1902] train-logloss:0.63201 [1903] train-logloss:0.63173 [1904] train-logloss:0.63202 [1905] train-logloss:0.63222 [1906] train-logloss:0.63181 [1907] train-logloss:0.63178 [1908] train-logloss:0.63213 [1909] train-logloss:0.63178 [1910] train-logloss:0.63225 [1911] train-logloss:0.63274 [1912] train-logloss:0.63294 [1913] train-logloss:0.63338 [1914] train-logloss:0.63338 [1915] train-logloss:0.63338 [1916] train-logloss:0.63341 [1917] train-logloss:0.63340 [1918] train-logloss:0.63349 [1919] train-logloss:0.63310 [1920] train-logloss:0.63315 [1921] train-logloss:0.63328 [1922] train-logloss:0.63319 [1923] train-logloss:0.63287 [1924] train-logloss:0.63251 [1925] train-logloss:0.63272 [1926] train-logloss:0.63240 [1927] train-logloss:0.63280 [1928] train-logloss:0.63241 [1929] train-logloss:0.63241 [1930] train-logloss:0.63241 [1931] train-logloss:0.63229 [1932] train-logloss:0.63205 [1933] train-logloss:0.63170 [1934] train-logloss:0.63269 [1935] train-logloss:0.63312 [1936] train-logloss:0.63253 [1937] train-logloss:0.63222 [1938] train-logloss:0.63223 [1939] train-logloss:0.63224 [1940] train-logloss:0.63252 [1941] train-logloss:0.63260 [1942] train-logloss:0.63329 [1943] train-logloss:0.63331 [1944] train-logloss:0.63432 [1945] train-logloss:0.63457 [1946] train-logloss:0.63454 [1947] train-logloss:0.63421 [1948] train-logloss:0.63418 [1949] train-logloss:0.63412 [1950] train-logloss:0.63373 [1951] train-logloss:0.63307 [1952] train-logloss:0.63306 [1953] train-logloss:0.63307 [1954] train-logloss:0.63296 [1955] train-logloss:0.63289 [1956] train-logloss:0.63286 [1957] train-logloss:0.63286 [1958] train-logloss:0.63286 [1959] train-logloss:0.63268 [1960] train-logloss:0.63289 [1961] train-logloss:0.63299 [1962] train-logloss:0.63288 [1963] train-logloss:0.63288 [1964] train-logloss:0.63280 [1965] train-logloss:0.63254 [1966] train-logloss:0.63272 [1967] train-logloss:0.63287 [1968] train-logloss:0.63327 [1969] train-logloss:0.63324 [1970] train-logloss:0.63324 [1971] train-logloss:0.63336 [1972] train-logloss:0.63382 [1973] train-logloss:0.63386 [1974] train-logloss:0.63427 [1975] train-logloss:0.63428 [1976] train-logloss:0.63462 [1977] train-logloss:0.63443 [1978] train-logloss:0.63445 [1979] train-logloss:0.63453 [1980] train-logloss:0.63466 [1981] train-logloss:0.63527 [1982] train-logloss:0.63546 [1983] train-logloss:0.63513 [1984] train-logloss:0.63484 [1985] train-logloss:0.63482 [1986] train-logloss:0.63484 [1987] train-logloss:0.63513 [1988] train-logloss:0.63536 [1989] train-logloss:0.63516 [1990] train-logloss:0.63468 [1991] train-logloss:0.63452 [1992] train-logloss:0.63448 [1993] train-logloss:0.63460 [1994] train-logloss:0.63451 [1995] train-logloss:0.63422 [1996] train-logloss:0.63409 [1997] train-logloss:0.63412 [1998] train-logloss:0.63406 [1999] train-logloss:0.63402

step-04 用模型預(yù)測(cè)

ytrain=model.predict(dtrain)

注意:

  • 這里model.predict()預(yù)測(cè)得到的是概率值,而不是0或者1的結(jié)果
  • 下面將結(jié)果轉(zhuǎn)換為0或者1
ytrain_class = (ytrain>= 0.5)*1 ytest=model.predict(dtest) y_pred = (ytest >= 0.5)*1

step-05 評(píng)價(jià)模型效果

print(‘train_roc_auc_score:’,metrics.roc_auc_score(y_train,ytrain))
print(‘test_roc_auc_score:’,metrics.roc_auc_score(y_test, ytest))
print(‘train_accuracy_score:’,metrics.accuracy_score(y_train, ytrain_class))
print(‘test_accuracy_score:’,metrics.accuracy_score(y_test,y_pred ))

step-06 保存模型并調(diào)用

joblib.dump(model , r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model') load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model') ytest=load_model.predict(dtest) ytest[0:5] array([0.265046 , 0.39359182, 0.82298654, 0.07664716, 0.28468448],dtype=float32)

三. 網(wǎng)格搜索最優(yōu)xgboost參數(shù)

1.step-01 配置參數(shù)列表

from sklearn.model_selection import GridSearchCV ## 定義參數(shù)取值范圍 learning_rate = [0.1] #0.15,0.11 subsample = [ 0.65] #0.7,0.8 colsample_bytree = [0.6] #0.7, 0.5 colsample_bylevel=[0.7] #0.8, colsample_bynode=[0.7] #0.8, max_depth = [6] #,7 n_estimators=[1000] #,900 gamma=[0,0.1] reg_alpha=[1,2] reg_lambda=[2,3] min_child_weight=[30,50] max_bin=[12,16] base_score=[0.4,0.5,0.6]parameters = { 'learning_rate': learning_rate,'subsample': subsample,'colsample_bytree':colsample_bytree,'colsample_bylevel':colsample_bylevel,'colsample_bynode':colsample_bynode,'max_depth': max_depth,'n_estimators':n_estimators,'gamma':gamma,'reg_alpha':reg_alpha,'reg_lambda':reg_lambda,'min_child_weight':min_child_weight,'max_bin':max_bin,'base_score':base_score,}

step-02 選擇待優(yōu)化模型

model = XGBClassifier( eval_metric="logloss")

step-03 進(jìn)行網(wǎng)格搜索 擬合模型

clf = GridSearchCV(model, parameters, cv=2, scoring='accuracy',verbose=1,n_jobs=-1) clf = clf.fit(train.values, y_train.values,eval_set=eval_set) Fitting 2 folds for each of 96 candidates, totalling 192 fits [0] validation_0-logloss:0.68822 [1] validation_0-logloss:0.68488 [2] validation_0-logloss:0.67979 [3] validation_0-logloss:0.67770 [4] validation_0-logloss:0.67431 [5] validation_0-logloss:0.67095 [6] validation_0-logloss:0.66894 [7] validation_0-logloss:0.66736 [8] validation_0-logloss:0.66269 [9] validation_0-logloss:0.65911 [10] validation_0-logloss:0.65691 [11] validation_0-logloss:0.65429 [12] validation_0-logloss:0.64994 [13] validation_0-logloss:0.64843 [14] validation_0-logloss:0.64748 [15] validation_0-logloss:0.64628 [16] validation_0-logloss:0.64424 [17] validation_0-logloss:0.64260 [18] validation_0-logloss:0.64172 [19] validation_0-logloss:0.64020 [20] validation_0-logloss:0.63933 [21] validation_0-logloss:0.63795 [22] validation_0-logloss:0.63296 [23] validation_0-logloss:0.63192 [24] validation_0-logloss:0.63157 [25] validation_0-logloss:0.63006 [26] validation_0-logloss:0.62925 [27] validation_0-logloss:0.62915 [28] validation_0-logloss:0.62914 [29] validation_0-logloss:0.62940 [30] validation_0-logloss:0.62872 [31] validation_0-logloss:0.62866 [32] validation_0-logloss:0.62860 [33] validation_0-logloss:0.62812 [34] validation_0-logloss:0.62823 [35] validation_0-logloss:0.62819 [36] validation_0-logloss:0.62489 [37] validation_0-logloss:0.62490 [38] validation_0-logloss:0.62293 [39] validation_0-logloss:0.62222 [40] validation_0-logloss:0.62102 [41] validation_0-logloss:0.61937 [42] validation_0-logloss:0.61839 [43] validation_0-logloss:0.61829 [44] validation_0-logloss:0.61782 [45] validation_0-logloss:0.61781 [46] validation_0-logloss:0.61763 [47] validation_0-logloss:0.61733 [48] validation_0-logloss:0.61704 [49] validation_0-logloss:0.61602 [50] validation_0-logloss:0.61585 [51] validation_0-logloss:0.61632 [52] validation_0-logloss:0.61601 [53] validation_0-logloss:0.61658 [54] validation_0-logloss:0.61598 [55] validation_0-logloss:0.61581 [56] validation_0-logloss:0.61530 [57] validation_0-logloss:0.61455 [58] validation_0-logloss:0.61557 [59] validation_0-logloss:0.61533 [60] validation_0-logloss:0.61390 [61] validation_0-logloss:0.61426 [62] validation_0-logloss:0.61365 [63] validation_0-logloss:0.61269 [64] validation_0-logloss:0.61244 [65] validation_0-logloss:0.61196 [66] validation_0-logloss:0.61196 [67] validation_0-logloss:0.61175 [68] validation_0-logloss:0.61179 [69] validation_0-logloss:0.61195 [70] validation_0-logloss:0.61165 [71] validation_0-logloss:0.61130 [72] validation_0-logloss:0.61112 [73] validation_0-logloss:0.61133 [74] validation_0-logloss:0.61152 [75] validation_0-logloss:0.61118 [76] validation_0-logloss:0.61160 [77] validation_0-logloss:0.61167 [78] validation_0-logloss:0.61175 [79] validation_0-logloss:0.61156 [80] validation_0-logloss:0.61164 [81] validation_0-logloss:0.61126 [82] validation_0-logloss:0.61166 [83] validation_0-logloss:0.61163 [84] validation_0-logloss:0.61156 [85] validation_0-logloss:0.61177 [86] validation_0-logloss:0.61271 [87] validation_0-logloss:0.61074 [88] validation_0-logloss:0.61048 [89] validation_0-logloss:0.60983 [90] validation_0-logloss:0.60992 [91] validation_0-logloss:0.60904 [92] validation_0-logloss:0.60858 [93] validation_0-logloss:0.60805 [94] validation_0-logloss:0.60787 [95] validation_0-logloss:0.60836 [96] validation_0-logloss:0.60857 [97] validation_0-logloss:0.60862 [98] validation_0-logloss:0.60874 [99] validation_0-logloss:0.60815 [100] validation_0-logloss:0.60815 [101] validation_0-logloss:0.60762 [102] validation_0-logloss:0.60721 [103] validation_0-logloss:0.60722 [104] validation_0-logloss:0.60713 [105] validation_0-logloss:0.60712 [106] validation_0-logloss:0.60659 [107] validation_0-logloss:0.60623 [108] validation_0-logloss:0.60603 [109] validation_0-logloss:0.60549 [110] validation_0-logloss:0.60546 [111] validation_0-logloss:0.60535 [112] validation_0-logloss:0.60451 [113] validation_0-logloss:0.60451 [114] validation_0-logloss:0.60397 [115] validation_0-logloss:0.60426 [116] validation_0-logloss:0.60452 [117] validation_0-logloss:0.60424 [118] validation_0-logloss:0.60428 [119] validation_0-logloss:0.60379 [120] validation_0-logloss:0.60408 [121] validation_0-logloss:0.60420 [122] validation_0-logloss:0.60399 [123] validation_0-logloss:0.60389 [124] validation_0-logloss:0.60441 [125] validation_0-logloss:0.60494 [126] validation_0-logloss:0.60457 [127] validation_0-logloss:0.60444 [128] validation_0-logloss:0.60442 [129] validation_0-logloss:0.60438 [130] validation_0-logloss:0.60436 [131] validation_0-logloss:0.60378 [132] validation_0-logloss:0.60310 [133] validation_0-logloss:0.60328 [134] validation_0-logloss:0.60349 [135] validation_0-logloss:0.60336 [136] validation_0-logloss:0.60355 [137] validation_0-logloss:0.60356 [138] validation_0-logloss:0.60385 [139] validation_0-logloss:0.60383 [140] validation_0-logloss:0.60363 [141] validation_0-logloss:0.60288 [142] validation_0-logloss:0.60319 [143] validation_0-logloss:0.60344 [144] validation_0-logloss:0.60350 [145] validation_0-logloss:0.60393 [146] validation_0-logloss:0.60399 [147] validation_0-logloss:0.60408 [148] validation_0-logloss:0.60428 [149] validation_0-logloss:0.60439 [150] validation_0-logloss:0.60444 [151] validation_0-logloss:0.60460 [152] validation_0-logloss:0.60519 [153] validation_0-logloss:0.60553 [154] validation_0-logloss:0.60516 [155] validation_0-logloss:0.60552 [156] validation_0-logloss:0.60554 [157] validation_0-logloss:0.60521 [158] validation_0-logloss:0.60540 [159] validation_0-logloss:0.60549 [160] validation_0-logloss:0.60561 [161] validation_0-logloss:0.60576 [162] validation_0-logloss:0.60609 [163] validation_0-logloss:0.60591 [164] validation_0-logloss:0.60582 [165] validation_0-logloss:0.60576 [166] validation_0-logloss:0.60607 [167] validation_0-logloss:0.60569 [168] validation_0-logloss:0.60565 [169] validation_0-logloss:0.60612 [170] validation_0-logloss:0.60641 [171] validation_0-logloss:0.60640 [172] validation_0-logloss:0.60609 [173] validation_0-logloss:0.60584 [174] validation_0-logloss:0.60604 [175] validation_0-logloss:0.60608 [176] validation_0-logloss:0.60609 [177] validation_0-logloss:0.60606 [178] validation_0-logloss:0.60660 [179] validation_0-logloss:0.60601 [180] validation_0-logloss:0.60543 [181] validation_0-logloss:0.60482 [182] validation_0-logloss:0.60460 [183] validation_0-logloss:0.60465 [184] validation_0-logloss:0.60453 [185] validation_0-logloss:0.60450 [186] validation_0-logloss:0.60447 [187] validation_0-logloss:0.60442 [188] validation_0-logloss:0.60432 [189] validation_0-logloss:0.60451 [190] validation_0-logloss:0.60469 [191] validation_0-logloss:0.60473 [192] validation_0-logloss:0.60455 [193] validation_0-logloss:0.60426 [194] validation_0-logloss:0.60474 [195] validation_0-logloss:0.60463 [196] validation_0-logloss:0.60473 [197] validation_0-logloss:0.60477 [198] validation_0-logloss:0.60532 [199] validation_0-logloss:0.60515 [200] validation_0-logloss:0.60518 [201] validation_0-logloss:0.60515 [202] validation_0-logloss:0.60500 [203] validation_0-logloss:0.60524 [204] validation_0-logloss:0.60522 [205] validation_0-logloss:0.60516 [206] validation_0-logloss:0.60473 [207] validation_0-logloss:0.60459 [208] validation_0-logloss:0.60468 [209] validation_0-logloss:0.60497 [210] validation_0-logloss:0.60538 [211] validation_0-logloss:0.60584 [212] validation_0-logloss:0.60534 [213] validation_0-logloss:0.60530 [214] validation_0-logloss:0.60557 [215] validation_0-logloss:0.60565 [216] validation_0-logloss:0.60610 [217] validation_0-logloss:0.60636 [218] validation_0-logloss:0.60650 [219] validation_0-logloss:0.60661 [220] validation_0-logloss:0.60655 [221] validation_0-logloss:0.60701 [222] validation_0-logloss:0.60714 [223] validation_0-logloss:0.60700 [224] validation_0-logloss:0.60750 [225] validation_0-logloss:0.60757 [226] validation_0-logloss:0.60762 [227] validation_0-logloss:0.60722 [228] validation_0-logloss:0.60706 [229] validation_0-logloss:0.60686 [230] validation_0-logloss:0.60654 [231] validation_0-logloss:0.60657 [232] validation_0-logloss:0.60676 [233] validation_0-logloss:0.60664 [234] validation_0-logloss:0.60668 [235] validation_0-logloss:0.60694 [236] validation_0-logloss:0.60680 [237] validation_0-logloss:0.60677 [238] validation_0-logloss:0.60649 [239] validation_0-logloss:0.60630 [240] validation_0-logloss:0.60609 [241] validation_0-logloss:0.60574 [242] validation_0-logloss:0.60603 [243] validation_0-logloss:0.60609 [244] validation_0-logloss:0.60588 [245] validation_0-logloss:0.60599 [246] validation_0-logloss:0.60576 [247] validation_0-logloss:0.60621 [248] validation_0-logloss:0.60669 [249] validation_0-logloss:0.60657 [250] validation_0-logloss:0.60696 [251] validation_0-logloss:0.60693 [252] validation_0-logloss:0.60653 [253] validation_0-logloss:0.60678 [254] validation_0-logloss:0.60658 [255] validation_0-logloss:0.60608 [256] validation_0-logloss:0.60590 [257] validation_0-logloss:0.60587 [258] validation_0-logloss:0.60539 [259] validation_0-logloss:0.60528 [260] validation_0-logloss:0.60510 [261] validation_0-logloss:0.60560 [262] validation_0-logloss:0.60583 [263] validation_0-logloss:0.60592 [264] validation_0-logloss:0.60591 [265] validation_0-logloss:0.60541 [266] validation_0-logloss:0.60535 [267] validation_0-logloss:0.60566 [268] validation_0-logloss:0.60543 [269] validation_0-logloss:0.60562 [270] validation_0-logloss:0.60554 [271] validation_0-logloss:0.60535 [272] validation_0-logloss:0.60563 [273] validation_0-logloss:0.60566 [274] validation_0-logloss:0.60529 [275] validation_0-logloss:0.60534 [276] validation_0-logloss:0.60551 [277] validation_0-logloss:0.60549 [278] validation_0-logloss:0.60546 [279] validation_0-logloss:0.60526 [280] validation_0-logloss:0.60515 [281] validation_0-logloss:0.60527 [282] validation_0-logloss:0.60511 [283] validation_0-logloss:0.60428 [284] validation_0-logloss:0.60414 [285] validation_0-logloss:0.60400 [286] validation_0-logloss:0.60428 [287] validation_0-logloss:0.60393 [288] validation_0-logloss:0.60395 [289] validation_0-logloss:0.60418 [290] validation_0-logloss:0.60400 [291] validation_0-logloss:0.60397 [292] validation_0-logloss:0.60400 [293] validation_0-logloss:0.60457 [294] validation_0-logloss:0.60491 [295] validation_0-logloss:0.60482 [296] validation_0-logloss:0.60503 [297] validation_0-logloss:0.60526 [298] validation_0-logloss:0.60520 [299] validation_0-logloss:0.60509 [300] validation_0-logloss:0.60484 [301] validation_0-logloss:0.60457 [302] validation_0-logloss:0.60474 [303] validation_0-logloss:0.60462 [304] validation_0-logloss:0.60472 [305] validation_0-logloss:0.60515 [306] validation_0-logloss:0.60481 [307] validation_0-logloss:0.60471 [308] validation_0-logloss:0.60469 [309] validation_0-logloss:0.60460 [310] validation_0-logloss:0.60466 [311] validation_0-logloss:0.60474 [312] validation_0-logloss:0.60487 [313] validation_0-logloss:0.60508 [314] validation_0-logloss:0.60515 [315] validation_0-logloss:0.60525 [316] validation_0-logloss:0.60464 [317] validation_0-logloss:0.60475 [318] validation_0-logloss:0.60480 [319] validation_0-logloss:0.60429 [320] validation_0-logloss:0.60425 [321] validation_0-logloss:0.60446 [322] validation_0-logloss:0.60442 [323] validation_0-logloss:0.60446 [324] validation_0-logloss:0.60472 [325] validation_0-logloss:0.60480 [326] validation_0-logloss:0.60463 [327] validation_0-logloss:0.60456 [328] validation_0-logloss:0.60465 [329] validation_0-logloss:0.60469 [330] validation_0-logloss:0.60477 [331] validation_0-logloss:0.60517 [332] validation_0-logloss:0.60530 [333] validation_0-logloss:0.60528 [334] validation_0-logloss:0.60485 [335] validation_0-logloss:0.60464 [336] validation_0-logloss:0.60450 [337] validation_0-logloss:0.60485 [338] validation_0-logloss:0.60507 [339] validation_0-logloss:0.60503 [340] validation_0-logloss:0.60486 [341] validation_0-logloss:0.60507 [342] validation_0-logloss:0.60502 [343] validation_0-logloss:0.60454 [344] validation_0-logloss:0.60476 [345] validation_0-logloss:0.60511 [346] validation_0-logloss:0.60532 [347] validation_0-logloss:0.60501 [348] validation_0-logloss:0.60510 [349] validation_0-logloss:0.60524 [350] validation_0-logloss:0.60553 [351] validation_0-logloss:0.60552 [352] validation_0-logloss:0.60485 [353] validation_0-logloss:0.60502 [354] validation_0-logloss:0.60475 [355] validation_0-logloss:0.60484 [356] validation_0-logloss:0.60499 [357] validation_0-logloss:0.60494 [358] validation_0-logloss:0.60474 [359] validation_0-logloss:0.60461 [360] validation_0-logloss:0.60477 [361] validation_0-logloss:0.60355 [362] validation_0-logloss:0.60340 [363] validation_0-logloss:0.60368 [364] validation_0-logloss:0.60373 [365] validation_0-logloss:0.60382 [366] validation_0-logloss:0.60382 [367] validation_0-logloss:0.60366 [368] validation_0-logloss:0.60367 [369] validation_0-logloss:0.60350 [370] validation_0-logloss:0.60348 [371] validation_0-logloss:0.60336 [372] validation_0-logloss:0.60300 [373] validation_0-logloss:0.60334 [374] validation_0-logloss:0.60330 [375] validation_0-logloss:0.60371 [376] validation_0-logloss:0.60409 [377] validation_0-logloss:0.60424 [378] validation_0-logloss:0.60393 [379] validation_0-logloss:0.60401 [380] validation_0-logloss:0.60403 [381] validation_0-logloss:0.60395 [382] validation_0-logloss:0.60366 [383] validation_0-logloss:0.60358 [384] validation_0-logloss:0.60356 [385] validation_0-logloss:0.60394 [386] validation_0-logloss:0.60367 [387] validation_0-logloss:0.60399 [388] validation_0-logloss:0.60392 [389] validation_0-logloss:0.60449 [390] validation_0-logloss:0.60467 [391] validation_0-logloss:0.60516 [392] validation_0-logloss:0.60514 [393] validation_0-logloss:0.60507 [394] validation_0-logloss:0.60519 [395] validation_0-logloss:0.60530 [396] validation_0-logloss:0.60509 [397] validation_0-logloss:0.60484 [398] validation_0-logloss:0.60473 [399] validation_0-logloss:0.60446 [400] validation_0-logloss:0.60440 [401] validation_0-logloss:0.60455 [402] validation_0-logloss:0.60452 [403] validation_0-logloss:0.60424 [404] validation_0-logloss:0.60409 [405] validation_0-logloss:0.60405 [406] validation_0-logloss:0.60397 [407] validation_0-logloss:0.60402 [408] validation_0-logloss:0.60391 [409] validation_0-logloss:0.60378 [410] validation_0-logloss:0.60382 [411] validation_0-logloss:0.60386 [412] validation_0-logloss:0.60359 [413] validation_0-logloss:0.60344 [414] validation_0-logloss:0.60370 [415] validation_0-logloss:0.60382 [416] validation_0-logloss:0.60394 [417] validation_0-logloss:0.60401 [418] validation_0-logloss:0.60385 [419] validation_0-logloss:0.60374 [420] validation_0-logloss:0.60382 [421] validation_0-logloss:0.60395 [422] validation_0-logloss:0.60394 [423] validation_0-logloss:0.60395 [424] validation_0-logloss:0.60385 [425] validation_0-logloss:0.60374 [426] validation_0-logloss:0.60343 [427] validation_0-logloss:0.60384 [428] validation_0-logloss:0.60435 [429] validation_0-logloss:0.60471 [430] validation_0-logloss:0.60426 [431] validation_0-logloss:0.60393 [432] validation_0-logloss:0.60411 [433] validation_0-logloss:0.60418 [434] validation_0-logloss:0.60446 [435] validation_0-logloss:0.60360 [436] validation_0-logloss:0.60333 [437] validation_0-logloss:0.60326 [438] validation_0-logloss:0.60335 [439] validation_0-logloss:0.60329 [440] validation_0-logloss:0.60312 [441] validation_0-logloss:0.60343 [442] validation_0-logloss:0.60387 [443] validation_0-logloss:0.60386 [444] validation_0-logloss:0.60377 [445] validation_0-logloss:0.60369 [446] validation_0-logloss:0.60395 [447] validation_0-logloss:0.60427 [448] validation_0-logloss:0.60443 [449] validation_0-logloss:0.60459 [450] validation_0-logloss:0.60452 [451] validation_0-logloss:0.60487 [452] validation_0-logloss:0.60499 [453] validation_0-logloss:0.60422 [454] validation_0-logloss:0.60429 [455] validation_0-logloss:0.60423 [456] validation_0-logloss:0.60457 [457] validation_0-logloss:0.60458 [458] validation_0-logloss:0.60459 [459] validation_0-logloss:0.60461 [460] validation_0-logloss:0.60487 [461] validation_0-logloss:0.60523 [462] validation_0-logloss:0.60522 [463] validation_0-logloss:0.60511 [464] validation_0-logloss:0.60496 [465] validation_0-logloss:0.60522 [466] validation_0-logloss:0.60537 [467] validation_0-logloss:0.60529 [468] validation_0-logloss:0.60488 [469] validation_0-logloss:0.60495 [470] validation_0-logloss:0.60476 [471] validation_0-logloss:0.60436 [472] validation_0-logloss:0.60453 [473] validation_0-logloss:0.60423 [474] validation_0-logloss:0.60389 [475] validation_0-logloss:0.60389 [476] validation_0-logloss:0.60365 [477] validation_0-logloss:0.60376 [478] validation_0-logloss:0.60377 [479] validation_0-logloss:0.60350 [480] validation_0-logloss:0.60341 [481] validation_0-logloss:0.60335 [482] validation_0-logloss:0.60350 [483] validation_0-logloss:0.60303 [484] validation_0-logloss:0.60329 [485] validation_0-logloss:0.60326 [486] validation_0-logloss:0.60336 [487] validation_0-logloss:0.60346 [488] validation_0-logloss:0.60365 [489] validation_0-logloss:0.60350 [490] validation_0-logloss:0.60350 [491] validation_0-logloss:0.60373 [492] validation_0-logloss:0.60363 [493] validation_0-logloss:0.60397 [494] validation_0-logloss:0.60403 [495] validation_0-logloss:0.60371 [496] validation_0-logloss:0.60382 [497] validation_0-logloss:0.60378 [498] validation_0-logloss:0.60390 [499] validation_0-logloss:0.60406 [500] validation_0-logloss:0.60411 [501] validation_0-logloss:0.60401 [502] validation_0-logloss:0.60416 [503] validation_0-logloss:0.60469 [504] validation_0-logloss:0.60466 [505] validation_0-logloss:0.60460 [506] validation_0-logloss:0.60480 [507] validation_0-logloss:0.60445 [508] validation_0-logloss:0.60471 [509] validation_0-logloss:0.60446 [510] validation_0-logloss:0.60447 [511] validation_0-logloss:0.60452 [512] validation_0-logloss:0.60432 [513] validation_0-logloss:0.60395 [514] validation_0-logloss:0.60411 [515] validation_0-logloss:0.60397 [516] validation_0-logloss:0.60418 [517] validation_0-logloss:0.60432 [518] validation_0-logloss:0.60424 [519] validation_0-logloss:0.60419 [520] validation_0-logloss:0.60442 [521] validation_0-logloss:0.60408 [522] validation_0-logloss:0.60413 [523] validation_0-logloss:0.60399 [524] validation_0-logloss:0.60416 [525] validation_0-logloss:0.60426 [526] validation_0-logloss:0.60448 [527] validation_0-logloss:0.60472 [528] validation_0-logloss:0.60455 [529] validation_0-logloss:0.60461 [530] validation_0-logloss:0.60446 [531] validation_0-logloss:0.60432 [532] validation_0-logloss:0.60416 [533] validation_0-logloss:0.60405 [534] validation_0-logloss:0.60423 [535] validation_0-logloss:0.60428 [536] validation_0-logloss:0.60378 [537] validation_0-logloss:0.60372 [538] validation_0-logloss:0.60382 [539] validation_0-logloss:0.60379 [540] validation_0-logloss:0.60388 [541] validation_0-logloss:0.60372 [542] validation_0-logloss:0.60382 [543] validation_0-logloss:0.60378 [544] validation_0-logloss:0.60367 [545] validation_0-logloss:0.60397 [546] validation_0-logloss:0.60379 [547] validation_0-logloss:0.60401 [548] validation_0-logloss:0.60416 [549] validation_0-logloss:0.60442 [550] validation_0-logloss:0.60443 [551] validation_0-logloss:0.60432 [552] validation_0-logloss:0.60414 [553] validation_0-logloss:0.60427 [554] validation_0-logloss:0.60457 [555] validation_0-logloss:0.60423 [556] validation_0-logloss:0.60474 [557] validation_0-logloss:0.60459 [558] validation_0-logloss:0.60463 [559] validation_0-logloss:0.60445 [560] validation_0-logloss:0.60412 [561] validation_0-logloss:0.60404 [562] validation_0-logloss:0.60418 [563] validation_0-logloss:0.60409 [564] validation_0-logloss:0.60425 [565] validation_0-logloss:0.60470 [566] validation_0-logloss:0.60461 [567] validation_0-logloss:0.60490 [568] validation_0-logloss:0.60464 [569] validation_0-logloss:0.60456 [570] validation_0-logloss:0.60474 [571] validation_0-logloss:0.60472 [572] validation_0-logloss:0.60466 [573] validation_0-logloss:0.60453 [574] validation_0-logloss:0.60497 [575] validation_0-logloss:0.60498 [576] validation_0-logloss:0.60512 [577] validation_0-logloss:0.60532 [578] validation_0-logloss:0.60528 [579] validation_0-logloss:0.60516 [580] validation_0-logloss:0.60537 [581] validation_0-logloss:0.60552 [582] validation_0-logloss:0.60537 [583] validation_0-logloss:0.60543 [584] validation_0-logloss:0.60534 [585] validation_0-logloss:0.60534 [586] validation_0-logloss:0.60523 [587] validation_0-logloss:0.60507 [588] validation_0-logloss:0.60517 [589] validation_0-logloss:0.60532 [590] validation_0-logloss:0.60511 [591] validation_0-logloss:0.60522 [592] validation_0-logloss:0.60522 [593] validation_0-logloss:0.60500 [594] validation_0-logloss:0.60504 [595] validation_0-logloss:0.60453 [596] validation_0-logloss:0.60472 [597] validation_0-logloss:0.60476 [598] validation_0-logloss:0.60454 [599] validation_0-logloss:0.60482 [600] validation_0-logloss:0.60493 [601] validation_0-logloss:0.60508 [602] validation_0-logloss:0.60498 [603] validation_0-logloss:0.60468 [604] validation_0-logloss:0.60489 [605] validation_0-logloss:0.60471 [606] validation_0-logloss:0.60445 [607] validation_0-logloss:0.60449 [608] validation_0-logloss:0.60416 [609] validation_0-logloss:0.60470 [610] validation_0-logloss:0.60475 [611] validation_0-logloss:0.60463 [612] validation_0-logloss:0.60459 [613] validation_0-logloss:0.60463 [614] validation_0-logloss:0.60483 [615] validation_0-logloss:0.60463 [616] validation_0-logloss:0.60455 [617] validation_0-logloss:0.60469 [618] validation_0-logloss:0.60512 [619] validation_0-logloss:0.60497 [620] validation_0-logloss:0.60498 [621] validation_0-logloss:0.60506 [622] validation_0-logloss:0.60505 [623] validation_0-logloss:0.60511 [624] validation_0-logloss:0.60516 [625] validation_0-logloss:0.60471 [626] validation_0-logloss:0.60465 [627] validation_0-logloss:0.60462 [628] validation_0-logloss:0.60465 [629] validation_0-logloss:0.60461 [630] validation_0-logloss:0.60509 [631] validation_0-logloss:0.60494 [632] validation_0-logloss:0.60538 [633] validation_0-logloss:0.60578 [634] validation_0-logloss:0.60573 [635] validation_0-logloss:0.60580 [636] validation_0-logloss:0.60596 [637] validation_0-logloss:0.60593 [638] validation_0-logloss:0.60586 [639] validation_0-logloss:0.60597 [640] validation_0-logloss:0.60609 [641] validation_0-logloss:0.60606 [642] validation_0-logloss:0.60550 [643] validation_0-logloss:0.60544 [644] validation_0-logloss:0.60542 [645] validation_0-logloss:0.60576 [646] validation_0-logloss:0.60561 [647] validation_0-logloss:0.60587 [648] validation_0-logloss:0.60584 [649] validation_0-logloss:0.60494 [650] validation_0-logloss:0.60505 [651] validation_0-logloss:0.60494 [652] validation_0-logloss:0.60488 [653] validation_0-logloss:0.60494 [654] validation_0-logloss:0.60439 [655] validation_0-logloss:0.60448 [656] validation_0-logloss:0.60448 [657] validation_0-logloss:0.60455 [658] validation_0-logloss:0.60459 [659] validation_0-logloss:0.60436 [660] validation_0-logloss:0.60424 [661] validation_0-logloss:0.60412 [662] validation_0-logloss:0.60409 [663] validation_0-logloss:0.60410 [664] validation_0-logloss:0.60421 [665] validation_0-logloss:0.60425 [666] validation_0-logloss:0.60453 [667] validation_0-logloss:0.60444 [668] validation_0-logloss:0.60434 [669] validation_0-logloss:0.60442 [670] validation_0-logloss:0.60437 [671] validation_0-logloss:0.60456 [672] validation_0-logloss:0.60458 [673] validation_0-logloss:0.60443 [674] validation_0-logloss:0.60407 [675] validation_0-logloss:0.60402 [676] validation_0-logloss:0.60406 [677] validation_0-logloss:0.60406 [678] validation_0-logloss:0.60412 [679] validation_0-logloss:0.60435 [680] validation_0-logloss:0.60433 [681] validation_0-logloss:0.60408 [682] validation_0-logloss:0.60389 [683] validation_0-logloss:0.60368 [684] validation_0-logloss:0.60364 [685] validation_0-logloss:0.60370 [686] validation_0-logloss:0.60360 [687] validation_0-logloss:0.60370 [688] validation_0-logloss:0.60363 [689] validation_0-logloss:0.60367 [690] validation_0-logloss:0.60391 [691] validation_0-logloss:0.60374 [692] validation_0-logloss:0.60393 [693] validation_0-logloss:0.60394 [694] validation_0-logloss:0.60422 [695] validation_0-logloss:0.60424 [696] validation_0-logloss:0.60417 [697] validation_0-logloss:0.60411 [698] validation_0-logloss:0.60426 [699] validation_0-logloss:0.60473 [700] validation_0-logloss:0.60487 [701] validation_0-logloss:0.60560 [702] validation_0-logloss:0.60577 [703] validation_0-logloss:0.60570 [704] validation_0-logloss:0.60535 [705] validation_0-logloss:0.60524 [706] validation_0-logloss:0.60532 [707] validation_0-logloss:0.60555 [708] validation_0-logloss:0.60548 [709] validation_0-logloss:0.60556 [710] validation_0-logloss:0.60569 [711] validation_0-logloss:0.60592 [712] validation_0-logloss:0.60615 [713] validation_0-logloss:0.60617 [714] validation_0-logloss:0.60631 [715] validation_0-logloss:0.60655 [716] validation_0-logloss:0.60684 [717] validation_0-logloss:0.60676 [718] validation_0-logloss:0.60646 [719] validation_0-logloss:0.60614 [720] validation_0-logloss:0.60583 [721] validation_0-logloss:0.60571 [722] validation_0-logloss:0.60550 [723] validation_0-logloss:0.60545 [724] validation_0-logloss:0.60471 [725] validation_0-logloss:0.60475 [726] validation_0-logloss:0.60462 [727] validation_0-logloss:0.60456 [728] validation_0-logloss:0.60422 [729] validation_0-logloss:0.60413 [730] validation_0-logloss:0.60415 [731] validation_0-logloss:0.60436 [732] validation_0-logloss:0.60453 [733] validation_0-logloss:0.60435 [734] validation_0-logloss:0.60413 [735] validation_0-logloss:0.60428 [736] validation_0-logloss:0.60421 [737] validation_0-logloss:0.60376 [738] validation_0-logloss:0.60376 [739] validation_0-logloss:0.60379 [740] validation_0-logloss:0.60400 [741] validation_0-logloss:0.60416 [742] validation_0-logloss:0.60410 [743] validation_0-logloss:0.60400 [744] validation_0-logloss:0.60408 [745] validation_0-logloss:0.60419 [746] validation_0-logloss:0.60411 [747] validation_0-logloss:0.60401 [748] validation_0-logloss:0.60395 [749] validation_0-logloss:0.60409 [750] validation_0-logloss:0.60397 [751] validation_0-logloss:0.60388 [752] validation_0-logloss:0.60448 [753] validation_0-logloss:0.60439 [754] validation_0-logloss:0.60436 [755] validation_0-logloss:0.60419 [756] validation_0-logloss:0.60411 [757] validation_0-logloss:0.60439 [758] validation_0-logloss:0.60456 [759] validation_0-logloss:0.60472 [760] validation_0-logloss:0.60418 [761] validation_0-logloss:0.60395 [762] validation_0-logloss:0.60395 [763] validation_0-logloss:0.60384 [764] validation_0-logloss:0.60380 [765] validation_0-logloss:0.60412 [766] validation_0-logloss:0.60415 [767] validation_0-logloss:0.60427 [768] validation_0-logloss:0.60411 [769] validation_0-logloss:0.60426 [770] validation_0-logloss:0.60430 [771] validation_0-logloss:0.60455 [772] validation_0-logloss:0.60482 [773] validation_0-logloss:0.60490 [774] validation_0-logloss:0.60482 [775] validation_0-logloss:0.60506 [776] validation_0-logloss:0.60499 [777] validation_0-logloss:0.60479 [778] validation_0-logloss:0.60462 [779] validation_0-logloss:0.60462 [780] validation_0-logloss:0.60461 [781] validation_0-logloss:0.60505 [782] validation_0-logloss:0.60512 [783] validation_0-logloss:0.60534 [784] validation_0-logloss:0.60552 [785] validation_0-logloss:0.60558 [786] validation_0-logloss:0.60575 [787] validation_0-logloss:0.60570 [788] validation_0-logloss:0.60578 [789] validation_0-logloss:0.60564 [790] validation_0-logloss:0.60568 [791] validation_0-logloss:0.60587 [792] validation_0-logloss:0.60602 [793] validation_0-logloss:0.60574 [794] validation_0-logloss:0.60576 [795] validation_0-logloss:0.60569 [796] validation_0-logloss:0.60569 [797] validation_0-logloss:0.60633 [798] validation_0-logloss:0.60678 [799] validation_0-logloss:0.60706 [800] validation_0-logloss:0.60701 [801] validation_0-logloss:0.60686 [802] validation_0-logloss:0.60681 [803] validation_0-logloss:0.60680 [804] validation_0-logloss:0.60670 [805] validation_0-logloss:0.60700 [806] validation_0-logloss:0.60709 [807] validation_0-logloss:0.60697 [808] validation_0-logloss:0.60676 [809] validation_0-logloss:0.60660 [810] validation_0-logloss:0.60628 [811] validation_0-logloss:0.60646 [812] validation_0-logloss:0.60627 [813] validation_0-logloss:0.60681 [814] validation_0-logloss:0.60678 [815] validation_0-logloss:0.60702 [816] validation_0-logloss:0.60666 [817] validation_0-logloss:0.60681 [818] validation_0-logloss:0.60716 [819] validation_0-logloss:0.60757 [820] validation_0-logloss:0.60738 [821] validation_0-logloss:0.60758 [822] validation_0-logloss:0.60761 [823] validation_0-logloss:0.60766 [824] validation_0-logloss:0.60746 [825] validation_0-logloss:0.60728 [826] validation_0-logloss:0.60736 [827] validation_0-logloss:0.60739 [828] validation_0-logloss:0.60743 [829] validation_0-logloss:0.60748 [830] validation_0-logloss:0.60727 [831] validation_0-logloss:0.60745 [832] validation_0-logloss:0.60717 [833] validation_0-logloss:0.60697 [834] validation_0-logloss:0.60676 [835] validation_0-logloss:0.60640 [836] validation_0-logloss:0.60708 [837] validation_0-logloss:0.60744 [838] validation_0-logloss:0.60775 [839] validation_0-logloss:0.60798 [840] validation_0-logloss:0.60808 [841] validation_0-logloss:0.60765 [842] validation_0-logloss:0.60776 [843] validation_0-logloss:0.60782 [844] validation_0-logloss:0.60783 [845] validation_0-logloss:0.60776 [846] validation_0-logloss:0.60800 [847] validation_0-logloss:0.60782 [848] validation_0-logloss:0.60815 [849] validation_0-logloss:0.60799 [850] validation_0-logloss:0.60784 [851] validation_0-logloss:0.60796 [852] validation_0-logloss:0.60805 [853] validation_0-logloss:0.60803 [854] validation_0-logloss:0.60794 [855] validation_0-logloss:0.60811 [856] validation_0-logloss:0.60789 [857] validation_0-logloss:0.60779 [858] validation_0-logloss:0.60777 [859] validation_0-logloss:0.60769 [860] validation_0-logloss:0.60778 [861] validation_0-logloss:0.60765 [862] validation_0-logloss:0.60734 [863] validation_0-logloss:0.60729 [864] validation_0-logloss:0.60720 [865] validation_0-logloss:0.60696 [866] validation_0-logloss:0.60701 [867] validation_0-logloss:0.60726 [868] validation_0-logloss:0.60718 [869] validation_0-logloss:0.60698 [870] validation_0-logloss:0.60683 [871] validation_0-logloss:0.60689 [872] validation_0-logloss:0.60708 [873] validation_0-logloss:0.60722 [874] validation_0-logloss:0.60703 [875] validation_0-logloss:0.60677 [876] validation_0-logloss:0.60664 [877] validation_0-logloss:0.60656 [878] validation_0-logloss:0.60645 [879] validation_0-logloss:0.60644 [880] validation_0-logloss:0.60642 [881] validation_0-logloss:0.60628 [882] validation_0-logloss:0.60623 [883] validation_0-logloss:0.60586 [884] validation_0-logloss:0.60563 [885] validation_0-logloss:0.60562 [886] validation_0-logloss:0.60593 [887] validation_0-logloss:0.60599 [888] validation_0-logloss:0.60578 [889] validation_0-logloss:0.60594 [890] validation_0-logloss:0.60606 [891] validation_0-logloss:0.60617 [892] validation_0-logloss:0.60616 [893] validation_0-logloss:0.60620 [894] validation_0-logloss:0.60611 [895] validation_0-logloss:0.60604 [896] validation_0-logloss:0.60608 [897] validation_0-logloss:0.60654 [898] validation_0-logloss:0.60656 [899] validation_0-logloss:0.60647 [900] validation_0-logloss:0.60649 [901] validation_0-logloss:0.60647 [902] validation_0-logloss:0.60646 [903] validation_0-logloss:0.60673 [904] validation_0-logloss:0.60678 [905] validation_0-logloss:0.60708 [906] validation_0-logloss:0.60672 [907] validation_0-logloss:0.60680 [908] validation_0-logloss:0.60665 [909] validation_0-logloss:0.60660 [910] validation_0-logloss:0.60646 [911] validation_0-logloss:0.60655 [912] validation_0-logloss:0.60660 [913] validation_0-logloss:0.60635 [914] validation_0-logloss:0.60667 [915] validation_0-logloss:0.60676 [916] validation_0-logloss:0.60678 [917] validation_0-logloss:0.60682 [918] validation_0-logloss:0.60632 [919] validation_0-logloss:0.60579 [920] validation_0-logloss:0.60602 [921] validation_0-logloss:0.60611 [922] validation_0-logloss:0.60623 [923] validation_0-logloss:0.60628 [924] validation_0-logloss:0.60643 [925] validation_0-logloss:0.60628 [926] validation_0-logloss:0.60611 [927] validation_0-logloss:0.60583 [928] validation_0-logloss:0.60574 [929] validation_0-logloss:0.60544 [930] validation_0-logloss:0.60559 [931] validation_0-logloss:0.60561 [932] validation_0-logloss:0.60572 [933] validation_0-logloss:0.60564 [934] validation_0-logloss:0.60589 [935] validation_0-logloss:0.60591 [936] validation_0-logloss:0.60569 [937] validation_0-logloss:0.60572 [938] validation_0-logloss:0.60552 [939] validation_0-logloss:0.60558 [940] validation_0-logloss:0.60522 [941] validation_0-logloss:0.60468 [942] validation_0-logloss:0.60427 [943] validation_0-logloss:0.60452 [944] validation_0-logloss:0.60500 [945] validation_0-logloss:0.60481 [946] validation_0-logloss:0.60507 [947] validation_0-logloss:0.60503 [948] validation_0-logloss:0.60505 [949] validation_0-logloss:0.60494 [950] validation_0-logloss:0.60439 [951] validation_0-logloss:0.60454 [952] validation_0-logloss:0.60453 [953] validation_0-logloss:0.60467 [954] validation_0-logloss:0.60456 [955] validation_0-logloss:0.60452 [956] validation_0-logloss:0.60464 [957] validation_0-logloss:0.60494 [958] validation_0-logloss:0.60493 [959] validation_0-logloss:0.60518 [960] validation_0-logloss:0.60535 [961] validation_0-logloss:0.60534 [962] validation_0-logloss:0.60530 [963] validation_0-logloss:0.60515 [964] validation_0-logloss:0.60497 [965] validation_0-logloss:0.60475 [966] validation_0-logloss:0.60487 [967] validation_0-logloss:0.60496 [968] validation_0-logloss:0.60503 [969] validation_0-logloss:0.60510 [970] validation_0-logloss:0.60502 [971] validation_0-logloss:0.60511 [972] validation_0-logloss:0.60512 [973] validation_0-logloss:0.60506 [974] validation_0-logloss:0.60495 [975] validation_0-logloss:0.60517 [976] validation_0-logloss:0.60527 [977] validation_0-logloss:0.60520 [978] validation_0-logloss:0.60499 [979] validation_0-logloss:0.60524 [980] validation_0-logloss:0.60502 [981] validation_0-logloss:0.60549 [982] validation_0-logloss:0.60578 [983] validation_0-logloss:0.60528 [984] validation_0-logloss:0.60477 [985] validation_0-logloss:0.60478 [986] validation_0-logloss:0.60509 [987] validation_0-logloss:0.60460 [988] validation_0-logloss:0.60440 [989] validation_0-logloss:0.60463 [990] validation_0-logloss:0.60491 [991] validation_0-logloss:0.60490 [992] validation_0-logloss:0.60493 [993] validation_0-logloss:0.60501 [994] validation_0-logloss:0.60499 [995] validation_0-logloss:0.60497 [996] validation_0-logloss:0.60508 [997] validation_0-logloss:0.60511 [998] validation_0-logloss:0.60555 [999] validation_0-logloss:0.60554

step-04 確認(rèn)最優(yōu)參數(shù)

print(clf.best_params_) {'base_score': 0.5, 'colsample_bylevel': 0.7, 'colsample_bynode': 0.7, 'colsample_bytree': 0.6, 'gamma': 0, 'learning_rate': 0.1, 'max_bin': 12, 'max_depth': 6, 'min_child_weight': 30, 'n_estimators': 1000, 'reg_alpha': 2, 'reg_lambda': 3, 'subsample': 0.65}

step-05 選取最優(yōu)模型

best_model=clf.best_estimator_

step-06 評(píng)價(jià)最優(yōu)模型

model_eval2(best_model, train.values, test.values) train_roc_auc_score: 0.8766644056264636 test_roc_auc_score: 0.7278343023255814 train_accuracy_score: 0.8 test_accuracy_score: 0.6833333333333333 train_precision_score: 0.8069963811821471 test__precision_score: 0.7162921348314607 train_recall_score: 0.8479087452471483 test_recall_score: 0.7412790697674418 train_f1_score: 0.8269468479604452 test_f1_score: 0.7285714285714285

step-07 保存并調(diào)用模型

joblib.dump(best_model , r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model') best_model=joblib.load( r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model') model_eval2(best_model, train.values, test.values) train_roc_auc_score: 0.8766644056264636 test_roc_auc_score: 0.7278343023255814 train_accuracy_score: 0.8 test_accuracy_score: 0.6833333333333333 train_precision_score: 0.8069963811821471 test__precision_score: 0.7162921348314607 train_recall_score: 0.8479087452471483 test_recall_score: 0.7412790697674418 train_f1_score: 0.8269468479604452 test_f1_score: 0.7285714285714285

總結(jié)

以上是生活随笔為你收集整理的集成学习01_xgboost参数讲解与实战的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

中文无码成人免费视频在线观看 | 中文字幕av无码一区二区三区电影 | 欧美 丝袜 自拍 制服 另类 | 少妇激情av一区二区 | 久久精品人妻少妇一区二区三区 | 亚洲a无码综合a国产av中文 | 18无码粉嫩小泬无套在线观看 | 沈阳熟女露脸对白视频 | 国产av久久久久精东av | 性史性农村dvd毛片 | 乱人伦人妻中文字幕无码 | 欧美激情综合亚洲一二区 | 色婷婷综合中文久久一本 | 啦啦啦www在线观看免费视频 | 国产国产精品人在线视 | 国产两女互慰高潮视频在线观看 | 性生交片免费无码看人 | 中文精品久久久久人妻不卡 | 奇米影视7777久久精品人人爽 | 无码人妻丰满熟妇区毛片18 | 国语精品一区二区三区 | 久久精品国产一区二区三区 | 天堂无码人妻精品一区二区三区 | 麻豆av传媒蜜桃天美传媒 | 国产内射老熟女aaaa | 天天躁日日躁狠狠躁免费麻豆 | 六月丁香婷婷色狠狠久久 | 国产欧美熟妇另类久久久 | 久久久久久久人妻无码中文字幕爆 | 精品国产青草久久久久福利 | 中文字幕久久久久人妻 | 水蜜桃亚洲一二三四在线 | 中文字幕乱码人妻二区三区 | 午夜福利电影 | 成人无码精品1区2区3区免费看 | 国产激情艳情在线看视频 | 午夜无码区在线观看 | 日日躁夜夜躁狠狠躁 | 国产av人人夜夜澡人人爽麻豆 | 欧美老熟妇乱xxxxx | 日韩av无码中文无码电影 | 国产熟妇另类久久久久 | 无码国内精品人妻少妇 | 搡女人真爽免费视频大全 | 性色av无码免费一区二区三区 | 久久久成人毛片无码 | 天下第一社区视频www日本 | 无码人妻少妇伦在线电影 | 精品国产一区二区三区av 性色 | 一本久久a久久精品vr综合 | 俄罗斯老熟妇色xxxx | 国产精品人妻一区二区三区四 | 无码纯肉视频在线观看 | 九九综合va免费看 | 国产在线精品一区二区高清不卡 | 色一情一乱一伦一视频免费看 | 国产精品久久久av久久久 | 夜夜影院未满十八勿进 | 国产av无码专区亚洲a∨毛片 | 2019nv天堂香蕉在线观看 | 亚洲区欧美区综合区自拍区 | 亚洲精品久久久久avwww潮水 | 国产成人精品三级麻豆 | 国产免费久久久久久无码 | 日韩精品成人一区二区三区 | 麻豆md0077饥渴少妇 | 欧美日韩久久久精品a片 | 自拍偷自拍亚洲精品被多人伦好爽 | 在线 国产 欧美 亚洲 天堂 | 日本熟妇浓毛 | 国产乱人无码伦av在线a | 欧美老人巨大xxxx做受 | 77777熟女视频在线观看 а天堂中文在线官网 | 久久精品国产大片免费观看 | 激情五月综合色婷婷一区二区 | 成熟人妻av无码专区 | 亚洲国产成人av在线观看 | 国内少妇偷人精品视频 | 国产人成高清在线视频99最全资源 | 三上悠亚人妻中文字幕在线 | 精品人妻人人做人人爽 | 丰满人妻翻云覆雨呻吟视频 | 少女韩国电视剧在线观看完整 | 综合人妻久久一区二区精品 | 中文字幕色婷婷在线视频 | 麻花豆传媒剧国产免费mv在线 | 十八禁视频网站在线观看 | 荡女精品导航 | 久精品国产欧美亚洲色aⅴ大片 | 2020久久香蕉国产线看观看 | 天天摸天天碰天天添 | 婷婷丁香五月天综合东京热 | 强伦人妻一区二区三区视频18 | 亚洲aⅴ无码成人网站国产app | 精品无码国产自产拍在线观看蜜 | 女高中生第一次破苞av | 国产色视频一区二区三区 | 131美女爱做视频 | 秋霞成人午夜鲁丝一区二区三区 | 国产精品欧美成人 | 熟女少妇在线视频播放 | 国产色xx群视频射精 | 300部国产真实乱 | 中文字幕色婷婷在线视频 | 亚洲精品国产精品乱码不卡 | 波多野结衣乳巨码无在线观看 | 国产精品久久久久久久9999 | 1000部夫妻午夜免费 | 装睡被陌生人摸出水好爽 | 国产亚洲精品久久久久久大师 | 无码国产激情在线观看 | 国内揄拍国内精品少妇国语 | 啦啦啦www在线观看免费视频 | 国产精品人人爽人人做我的可爱 | 中国大陆精品视频xxxx | 国产麻豆精品一区二区三区v视界 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产免费久久久久久无码 | 18黄暴禁片在线观看 | 亚洲经典千人经典日产 | 午夜精品一区二区三区在线观看 | 特大黑人娇小亚洲女 | 亚洲成av人影院在线观看 | 东北女人啪啪对白 | 中文字幕日产无线码一区 | www国产精品内射老师 | 精品亚洲成av人在线观看 | 亚洲欧洲无卡二区视頻 | 人人澡人人透人人爽 | av香港经典三级级 在线 | 国产精品无码一区二区桃花视频 | 久精品国产欧美亚洲色aⅴ大片 | 久久综合九色综合97网 | 5858s亚洲色大成网站www | 97精品人妻一区二区三区香蕉 | 精品 日韩 国产 欧美 视频 | 国产成人精品三级麻豆 | 色婷婷香蕉在线一区二区 | 亚洲中文字幕无码中文字在线 | 国产农村乱对白刺激视频 | 少妇无码av无码专区在线观看 | 日本一卡2卡3卡四卡精品网站 | 成人动漫在线观看 | 亚洲日韩av片在线观看 | 国模大胆一区二区三区 | 又色又爽又黄的美女裸体网站 | 亚洲色偷偷男人的天堂 | 亚洲男人av天堂午夜在 | 又黄又爽又色的视频 | 亚洲 激情 小说 另类 欧美 | 国产另类ts人妖一区二区 | 网友自拍区视频精品 | 人人妻人人澡人人爽欧美一区 | 精品国产一区二区三区四区 | 久久久久se色偷偷亚洲精品av | 在线观看国产一区二区三区 | 77777熟女视频在线观看 а天堂中文在线官网 | 少妇激情av一区二区 | 国产无套粉嫩白浆在线 | 久久人人97超碰a片精品 | 久久久久免费看成人影片 | 国产免费无码一区二区视频 | 亚洲自偷自拍另类第1页 | 天堂久久天堂av色综合 | 久久 国产 尿 小便 嘘嘘 | 精品国产av色一区二区深夜久久 | 国产午夜亚洲精品不卡下载 | 伦伦影院午夜理论片 | 亚洲日本va中文字幕 | 丁香花在线影院观看在线播放 | 亚洲精品成a人在线观看 | 中文无码成人免费视频在线观看 | 久久久婷婷五月亚洲97号色 | 麻豆蜜桃av蜜臀av色欲av | 中文字幕无码av波多野吉衣 | 国产精品欧美成人 | 精品久久久久久亚洲精品 | 国产 精品 自在自线 | 亚洲精品成a人在线观看 | 成人免费视频一区二区 | 国产成人无码av片在线观看不卡 | 国产成人无码午夜视频在线观看 | 丰满人妻翻云覆雨呻吟视频 | 色综合视频一区二区三区 | 亚洲国产精品无码久久久久高潮 | 青青青爽视频在线观看 | 久久久久久av无码免费看大片 | 国产精品亚洲一区二区三区喷水 | 免费中文字幕日韩欧美 | 久久久久久国产精品无码下载 | 精品国精品国产自在久国产87 | 免费人成网站视频在线观看 | 乌克兰少妇xxxx做受 | 成人女人看片免费视频放人 | 国产一区二区三区影院 | 欧美日韩在线亚洲综合国产人 | 国产成人av免费观看 | 国产国产精品人在线视 | 无码帝国www无码专区色综合 | 男女性色大片免费网站 | 精品无码国产自产拍在线观看蜜 | 婷婷六月久久综合丁香 | 少妇激情av一区二区 | 色综合久久久无码网中文 | 亚洲日韩av一区二区三区中文 | 中文字幕无码av激情不卡 | 巨爆乳无码视频在线观看 | 女人色极品影院 | 色婷婷久久一区二区三区麻豆 | 亚洲一区二区三区四区 | 久激情内射婷内射蜜桃人妖 | 亚洲一区二区三区偷拍女厕 | 国产精品沙发午睡系列 | 国产精品自产拍在线观看 | 亚洲色在线无码国产精品不卡 | 西西人体www44rt大胆高清 | 无码人妻精品一区二区三区下载 | 天堂亚洲2017在线观看 | 中国女人内谢69xxxxxa片 | 俺去俺来也在线www色官网 | 日欧一片内射va在线影院 | 亚洲色偷偷男人的天堂 | 99久久无码一区人妻 | 亚洲自偷自拍另类第1页 | 亚洲成av人影院在线观看 | 国产激情精品一区二区三区 | 网友自拍区视频精品 | 国内揄拍国内精品人妻 | 激情内射日本一区二区三区 | 精品水蜜桃久久久久久久 | 久久99精品久久久久久 | 午夜福利一区二区三区在线观看 | 亚洲娇小与黑人巨大交 | 99久久亚洲精品无码毛片 | 一二三四社区在线中文视频 | 在线播放亚洲第一字幕 | 亚洲精品鲁一鲁一区二区三区 | 欧美日韩久久久精品a片 | 中文无码成人免费视频在线观看 | 午夜丰满少妇性开放视频 | 撕开奶罩揉吮奶头视频 | 亚洲一区二区三区播放 | 国产无遮挡又黄又爽免费视频 | 久久久精品456亚洲影院 | 国产黑色丝袜在线播放 | 国产精品a成v人在线播放 | 国精产品一区二区三区 | 麻豆精品国产精华精华液好用吗 | 国产精品久久久久无码av色戒 | 日欧一片内射va在线影院 | 日日橹狠狠爱欧美视频 | 波多野42部无码喷潮在线 | 国内精品一区二区三区不卡 | 国产内射爽爽大片视频社区在线 | 日本肉体xxxx裸交 | 中文毛片无遮挡高清免费 | 人人妻人人澡人人爽精品欧美 | 久久国语露脸国产精品电影 | 国内老熟妇对白xxxxhd | 丰满少妇高潮惨叫视频 | 亚洲欧洲日本综合aⅴ在线 | av无码电影一区二区三区 | 老司机亚洲精品影院 | 欧美大屁股xxxxhd黑色 | 国产乱人偷精品人妻a片 | av香港经典三级级 在线 | 中文字幕无线码免费人妻 | 永久免费观看国产裸体美女 | 精品国产aⅴ无码一区二区 | 国产人成高清在线视频99最全资源 | 国产成人无码区免费内射一片色欲 | 久久久久免费精品国产 | 国产凸凹视频一区二区 | 国产精华av午夜在线观看 | 国产激情无码一区二区app | 国产亚洲日韩欧美另类第八页 | 精品久久8x国产免费观看 | 久久综合给合久久狠狠狠97色 | 色欲人妻aaaaaaa无码 | 好男人www社区 | 国产精品久久久久久亚洲影视内衣 | 国产真实伦对白全集 | 少妇一晚三次一区二区三区 | 国产亚洲tv在线观看 | 久久成人a毛片免费观看网站 | 人妻夜夜爽天天爽三区 | 无码一区二区三区在线 | 一区二区传媒有限公司 | 亚洲中文字幕va福利 | 国产 浪潮av性色四虎 | 欧美丰满老熟妇xxxxx性 | 亚洲无人区午夜福利码高清完整版 | 高清不卡一区二区三区 | 正在播放老肥熟妇露脸 | 国产人妻大战黑人第1集 | 婷婷五月综合缴情在线视频 | 人妻互换免费中文字幕 | 国产精品欧美成人 | 丁香花在线影院观看在线播放 | 国产精品怡红院永久免费 | 亚洲精品国产精品乱码视色 | 亚洲综合在线一区二区三区 | 未满成年国产在线观看 | 一区二区三区高清视频一 | 国产偷国产偷精品高清尤物 | 国产绳艺sm调教室论坛 | 久久久久av无码免费网 | 日日麻批免费40分钟无码 | 日韩人妻少妇一区二区三区 | 亚洲色成人中文字幕网站 | 丰满少妇弄高潮了www | 乱人伦人妻中文字幕无码久久网 | 日韩av无码中文无码电影 | 97久久国产亚洲精品超碰热 | 日韩精品乱码av一区二区 | 日本一卡二卡不卡视频查询 | 亚洲国产精品久久久天堂 | 国产 浪潮av性色四虎 | 娇妻被黑人粗大高潮白浆 | 亚洲爆乳精品无码一区二区三区 | 国产精品99久久精品爆乳 | 成人动漫在线观看 | 丰满人妻翻云覆雨呻吟视频 | 性色欲网站人妻丰满中文久久不卡 | 亚洲精品鲁一鲁一区二区三区 | 亚洲自偷精品视频自拍 | 午夜福利试看120秒体验区 | 又粗又大又硬又长又爽 | 亚洲人成网站色7799 | 天天拍夜夜添久久精品 | 131美女爱做视频 | 97se亚洲精品一区 | 精品人妻人人做人人爽夜夜爽 | 日日躁夜夜躁狠狠躁 | 久久国产精品_国产精品 | 人妻少妇被猛烈进入中文字幕 | 国产欧美熟妇另类久久久 | 国产小呦泬泬99精品 | 亚洲自偷精品视频自拍 | 爆乳一区二区三区无码 | 18黄暴禁片在线观看 | 欧美zoozzooz性欧美 | 18无码粉嫩小泬无套在线观看 | 18精品久久久无码午夜福利 | 女人被男人躁得好爽免费视频 | 久久这里只有精品视频9 | 亚洲精品www久久久 | 午夜精品一区二区三区的区别 | 国产无套内射久久久国产 | 青春草在线视频免费观看 | 精品无码国产自产拍在线观看蜜 | 蜜桃无码一区二区三区 | 日本乱偷人妻中文字幕 | 久久99精品久久久久久动态图 | 无码成人精品区在线观看 | 亚洲色欲色欲天天天www | 男人的天堂av网站 | 久久亚洲a片com人成 | 国产成人无码av一区二区 | 久久久久久av无码免费看大片 | 午夜精品久久久内射近拍高清 | 玩弄少妇高潮ⅹxxxyw | 亚洲男人av天堂午夜在 | 青青草原综合久久大伊人精品 | 少妇厨房愉情理9仑片视频 | 水蜜桃亚洲一二三四在线 | 天堂无码人妻精品一区二区三区 | 无码人妻少妇伦在线电影 | 熟女俱乐部五十路六十路av | 久久亚洲精品成人无码 | 亚洲区小说区激情区图片区 | 无码毛片视频一区二区本码 | 久久久久亚洲精品中文字幕 | 亚洲男女内射在线播放 | 天天拍夜夜添久久精品大 | 国产精品久久久午夜夜伦鲁鲁 | 国产办公室秘书无码精品99 | 亚洲精品国产精品乱码不卡 | 丝袜 中出 制服 人妻 美腿 | 亚拍精品一区二区三区探花 | 99精品久久毛片a片 | 国产亚洲人成在线播放 | 精品久久久无码中文字幕 | 伊在人天堂亚洲香蕉精品区 | 99久久久无码国产aaa精品 | 最新国产乱人伦偷精品免费网站 | 天堂亚洲2017在线观看 | 亚洲欧美日韩国产精品一区二区 | 欧美人与牲动交xxxx | 日韩 欧美 动漫 国产 制服 | 欧美成人午夜精品久久久 | 性史性农村dvd毛片 | 亚洲欧美精品伊人久久 | 人妻体内射精一区二区三四 | 亚洲男女内射在线播放 | 欧美国产日韩久久mv | 无码一区二区三区在线 | 国产特级毛片aaaaaa高潮流水 | 精品久久久久久亚洲精品 | 97色伦图片97综合影院 | 国产成人精品优优av | 国产无遮挡又黄又爽免费视频 | 亚无码乱人伦一区二区 | 亚洲欧美国产精品久久 | 天天做天天爱天天爽综合网 | 日韩精品久久久肉伦网站 | 无码免费一区二区三区 | 久久精品视频在线看15 | 午夜成人1000部免费视频 | 国产美女极度色诱视频www | 夜精品a片一区二区三区无码白浆 | 亚洲国产综合无码一区 | 国产在线精品一区二区高清不卡 | 影音先锋中文字幕无码 | 精品无人国产偷自产在线 | 理论片87福利理论电影 | 国产成人一区二区三区在线观看 | 国产精品igao视频网 | 高清无码午夜福利视频 | 久久精品99久久香蕉国产色戒 | 色综合久久88色综合天天 | 娇妻被黑人粗大高潮白浆 | 7777奇米四色成人眼影 | 久久 国产 尿 小便 嘘嘘 | 亚洲国产成人a精品不卡在线 | 欧美第一黄网免费网站 | 丰满肥臀大屁股熟妇激情视频 | 国产在线一区二区三区四区五区 | 欧美国产日产一区二区 | 牲交欧美兽交欧美 | 亚洲国产精品一区二区第一页 | 久久午夜夜伦鲁鲁片无码免费 | 亚洲中文字幕无码中字 | 扒开双腿疯狂进出爽爽爽视频 | 窝窝午夜理论片影院 | 成人欧美一区二区三区黑人免费 | 内射巨臀欧美在线视频 | 国产亚洲精品久久久久久国模美 | 欧美精品国产综合久久 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产精品毛片一区二区 | 精品国产一区二区三区四区在线看 | 1000部啪啪未满十八勿入下载 | 99久久亚洲精品无码毛片 | 色综合久久久久综合一本到桃花网 | 日本成熟视频免费视频 | 丰满人妻一区二区三区免费视频 | 成人免费视频一区二区 | 巨爆乳无码视频在线观看 | 香港三级日本三级妇三级 | 男人的天堂av网站 | 日产精品高潮呻吟av久久 | 亚洲娇小与黑人巨大交 | 国产精品无码永久免费888 | 国产xxx69麻豆国语对白 | 日本一区二区三区免费高清 | 国产欧美亚洲精品a | 日韩无码专区 | 国产两女互慰高潮视频在线观看 | 国产亚洲欧美在线专区 | 国产九九九九九九九a片 | 欧美亚洲日韩国产人成在线播放 | 女人高潮内射99精品 | 久久精品成人欧美大片 | 免费无码午夜福利片69 | 日韩 欧美 动漫 国产 制服 | 国产乱码精品一品二品 | 中文字幕人妻无码一区二区三区 | 4hu四虎永久在线观看 | 无码国内精品人妻少妇 | 国产午夜无码视频在线观看 | 久久精品人人做人人综合 | 真人与拘做受免费视频一 | 亚洲午夜无码久久 | 澳门永久av免费网站 | 无码人妻av免费一区二区三区 | 久久综合九色综合欧美狠狠 | 国产后入清纯学生妹 | 成人无码影片精品久久久 | 人妻少妇被猛烈进入中文字幕 | 成人亚洲精品久久久久 | 亚洲综合无码一区二区三区 | 亚洲国产精品无码一区二区三区 | aⅴ亚洲 日韩 色 图网站 播放 | 国产精品久久久久9999小说 | 欧美性猛交xxxx富婆 | 精品熟女少妇av免费观看 | 日日鲁鲁鲁夜夜爽爽狠狠 | 丝袜足控一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 日日麻批免费40分钟无码 | 国产午夜无码精品免费看 | √天堂中文官网8在线 | av无码不卡在线观看免费 | 国产精品毛多多水多 | 国产亚洲人成a在线v网站 | 丰满少妇弄高潮了www | 国産精品久久久久久久 | 婷婷丁香六月激情综合啪 | 特大黑人娇小亚洲女 | 日本大乳高潮视频在线观看 | 久久精品国产一区二区三区 | 水蜜桃av无码 | 性欧美videos高清精品 | 国产成人精品无码播放 | 又粗又大又硬又长又爽 | 欧美丰满少妇xxxx性 | 特级做a爰片毛片免费69 | 久久精品国产精品国产精品污 | 少妇厨房愉情理9仑片视频 | 4hu四虎永久在线观看 | 97久久国产亚洲精品超碰热 | 国产成人精品优优av | 一本无码人妻在中文字幕免费 | 国产一区二区不卡老阿姨 | 荫蒂添的好舒服视频囗交 | 国产xxx69麻豆国语对白 | 丰满岳乱妇在线观看中字无码 | 国产一区二区不卡老阿姨 | 日韩亚洲欧美精品综合 | 又紧又大又爽精品一区二区 | 狠狠综合久久久久综合网 | 国产成人一区二区三区在线观看 | v一区无码内射国产 | 中文字幕乱码人妻无码久久 | 熟女少妇在线视频播放 | 国内精品人妻无码久久久影院 | 图片区 小说区 区 亚洲五月 | 特黄特色大片免费播放器图片 | 欧美喷潮久久久xxxxx | 伦伦影院午夜理论片 | 欧美日韩精品 | 亚洲日韩av一区二区三区中文 | 免费中文字幕日韩欧美 | 特级做a爰片毛片免费69 | 未满小14洗澡无码视频网站 | 少妇无码av无码专区在线观看 | 日本丰满护士爆乳xxxx | 狂野欧美性猛交免费视频 | 欧洲美熟女乱又伦 | 国产成人精品久久亚洲高清不卡 | 精品 日韩 国产 欧美 视频 | 欧美黑人巨大xxxxx | 国产精品久久国产三级国 | 色爱情人网站 | 性生交片免费无码看人 | 国产色xx群视频射精 | 无码乱肉视频免费大全合集 | 激情国产av做激情国产爱 | 亚洲精品久久久久久一区二区 | 又粗又大又硬毛片免费看 | 色综合久久久无码网中文 | 色综合久久中文娱乐网 | 性欧美疯狂xxxxbbbb | 精品无码国产一区二区三区av | 国产乱人无码伦av在线a | 国产午夜手机精彩视频 | 狠狠色丁香久久婷婷综合五月 | 国产精品嫩草久久久久 | 午夜性刺激在线视频免费 | 欧美日韩一区二区综合 | 亚洲日韩av片在线观看 | 国产va免费精品观看 | 色婷婷综合中文久久一本 | 亚洲欧洲日本综合aⅴ在线 | 免费无码一区二区三区蜜桃大 | 东京一本一道一二三区 | 少妇厨房愉情理9仑片视频 | 国产精品免费大片 | 国产亚洲精品精品国产亚洲综合 | 国产无遮挡吃胸膜奶免费看 | 一个人免费观看的www视频 | 亚洲va中文字幕无码久久不卡 | 乱人伦中文视频在线观看 | 人人妻人人澡人人爽精品欧美 | 精品人妻人人做人人爽夜夜爽 | 久久久久国色av免费观看性色 | 在线观看欧美一区二区三区 | 小sao货水好多真紧h无码视频 | 女人高潮内射99精品 | 国产农村乱对白刺激视频 | 少妇无套内谢久久久久 | 精品国产乱码久久久久乱码 | 久在线观看福利视频 | 18无码粉嫩小泬无套在线观看 | 精品人妻人人做人人爽 | 久久熟妇人妻午夜寂寞影院 | 亚洲色大成网站www | 51国偷自产一区二区三区 | 成人免费视频视频在线观看 免费 | 人妻人人添人妻人人爱 | 亚洲成a人片在线观看日本 | 国产亚洲人成在线播放 | 国产va免费精品观看 | 狠狠色噜噜狠狠狠狠7777米奇 | 沈阳熟女露脸对白视频 | a在线观看免费网站大全 | 性色av无码免费一区二区三区 | 骚片av蜜桃精品一区 | аⅴ资源天堂资源库在线 | 性欧美videos高清精品 | 少妇被黑人到高潮喷出白浆 | 99久久久无码国产aaa精品 | aⅴ亚洲 日韩 色 图网站 播放 | 扒开双腿疯狂进出爽爽爽视频 | 色婷婷欧美在线播放内射 | 正在播放老肥熟妇露脸 | 中文字幕无码日韩专区 | 丰满少妇女裸体bbw | 国产9 9在线 | 中文 | 无码人妻精品一区二区三区下载 | 亚拍精品一区二区三区探花 | 人妻体内射精一区二区三四 | 国产99久久精品一区二区 | 欧美丰满熟妇xxxx性ppx人交 | 亚洲国产午夜精品理论片 | 国产深夜福利视频在线 | 国产亚洲精品久久久久久 | 波多野结衣aⅴ在线 | 波多野结衣av一区二区全免费观看 | 国产69精品久久久久app下载 | 亚洲国产欧美国产综合一区 | 亚洲综合另类小说色区 | 欧美猛少妇色xxxxx | 色五月丁香五月综合五月 | 亚洲狠狠婷婷综合久久 | 日本乱人伦片中文三区 | 2020久久超碰国产精品最新 | 欧美三级不卡在线观看 | 中文字幕av无码一区二区三区电影 | 久久国产36精品色熟妇 | 亚洲另类伦春色综合小说 | 小泽玛莉亚一区二区视频在线 | 欧美日韩人成综合在线播放 | 亚洲综合无码久久精品综合 | 久久久久久国产精品无码下载 | 欧洲极品少妇 | 中文字幕日产无线码一区 | 免费国产成人高清在线观看网站 | 国产成人无码av片在线观看不卡 | 欧美阿v高清资源不卡在线播放 | 国内精品九九久久久精品 | 成人无码视频免费播放 | 性欧美熟妇videofreesex | 国产亚洲欧美在线专区 | 荫蒂被男人添的好舒服爽免费视频 | 欧美日韩视频无码一区二区三 | 亚洲国产成人av在线观看 | 无码精品国产va在线观看dvd | 国产xxx69麻豆国语对白 | 欧美性黑人极品hd | 人人妻人人澡人人爽精品欧美 | 最新版天堂资源中文官网 | 国产成人精品三级麻豆 | 亚洲熟妇色xxxxx欧美老妇 | 少妇性l交大片欧洲热妇乱xxx | 图片区 小说区 区 亚洲五月 | 少妇太爽了在线观看 | 欧美国产日韩亚洲中文 | 日日摸日日碰夜夜爽av | 免费观看又污又黄的网站 | 乱人伦中文视频在线观看 | 日日碰狠狠丁香久燥 | 亚洲精品无码人妻无码 | 狠狠色色综合网站 | 在线欧美精品一区二区三区 | 日本熟妇大屁股人妻 | 男女猛烈xx00免费视频试看 | 内射欧美老妇wbb | 国产乱人伦偷精品视频 | 狂野欧美性猛xxxx乱大交 | 人人妻人人澡人人爽人人精品 | 亚洲va欧美va天堂v国产综合 | 欧洲美熟女乱又伦 | 精品水蜜桃久久久久久久 | 久久久久成人精品免费播放动漫 | 国产成人人人97超碰超爽8 | 亚洲色在线无码国产精品不卡 | 国内揄拍国内精品少妇国语 | √天堂中文官网8在线 | 学生妹亚洲一区二区 | 波多野结衣av在线观看 | 美女黄网站人色视频免费国产 | 少妇性荡欲午夜性开放视频剧场 | 一本加勒比波多野结衣 | 性色欲情网站iwww九文堂 | 黑人玩弄人妻中文在线 | 娇妻被黑人粗大高潮白浆 | 中文亚洲成a人片在线观看 | 六十路熟妇乱子伦 | 精品国产精品久久一区免费式 | 成年美女黄网站色大免费全看 | 亚洲一区二区三区偷拍女厕 | 无码人中文字幕 | 中文字幕无码av激情不卡 | 97精品人妻一区二区三区香蕉 | 女人被男人爽到呻吟的视频 | 亚洲日韩av一区二区三区四区 | 精品一二三区久久aaa片 | 国产av久久久久精东av | 亚洲成av人在线观看网址 | 青春草在线视频免费观看 | www一区二区www免费 | 久久人妻内射无码一区三区 | a片免费视频在线观看 | 亚洲国产午夜精品理论片 | 欧美人与禽猛交狂配 | 午夜精品久久久内射近拍高清 | 在线视频网站www色 | 国产精品久久久一区二区三区 | 亚洲区小说区激情区图片区 | 荫蒂被男人添的好舒服爽免费视频 | 青青草原综合久久大伊人精品 | 午夜福利一区二区三区在线观看 | 熟妇女人妻丰满少妇中文字幕 | 亚洲欧美色中文字幕在线 | 欧美第一黄网免费网站 | 国产色精品久久人妻 | 久久精品人人做人人综合试看 | 亚洲国产精品无码久久久久高潮 | 无码任你躁久久久久久久 | 丝袜足控一区二区三区 | 无码帝国www无码专区色综合 | 国产成人午夜福利在线播放 | 丝袜足控一区二区三区 | 国产精品第一国产精品 | 色一情一乱一伦一区二区三欧美 | 一本色道久久综合狠狠躁 | 在教室伦流澡到高潮hnp视频 | 久久精品人人做人人综合试看 | 日本精品人妻无码77777 天堂一区人妻无码 | 国产精品久久国产精品99 | 人妻少妇精品久久 | 亚洲一区二区三区国产精华液 | 无码av免费一区二区三区试看 | 九月婷婷人人澡人人添人人爽 | 男女超爽视频免费播放 | 超碰97人人射妻 | 小sao货水好多真紧h无码视频 | 日本一区二区三区免费播放 | 成人精品视频一区二区 | 国产精品毛片一区二区 | 亚洲一区二区三区偷拍女厕 | 青青青手机频在线观看 | 久久午夜无码鲁丝片午夜精品 | 狠狠cao日日穞夜夜穞av | 久久亚洲中文字幕精品一区 | 女人被男人躁得好爽免费视频 | 亚洲成在人网站无码天堂 | 色一情一乱一伦一视频免费看 | 欧洲熟妇色 欧美 | 日本在线高清不卡免费播放 | 亚洲一区二区三区四区 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲精品欧美二区三区中文字幕 | 久久久精品成人免费观看 | 久久无码专区国产精品s | 国产精品美女久久久网av | 少妇一晚三次一区二区三区 | 欧美35页视频在线观看 | 亚洲欧美中文字幕5发布 | 亚洲一区二区三区 | 波多野42部无码喷潮在线 | 婷婷丁香五月天综合东京热 | 国产又爽又猛又粗的视频a片 | 亚洲欧洲日本无在线码 | 99国产精品白浆在线观看免费 | 人妻少妇精品无码专区动漫 | 国产亚洲美女精品久久久2020 | 精品水蜜桃久久久久久久 | 国产成人久久精品流白浆 | 精品久久8x国产免费观看 | 国产无套粉嫩白浆在线 | 亚洲一区av无码专区在线观看 | 色婷婷香蕉在线一区二区 | 一本大道伊人av久久综合 | 给我免费的视频在线观看 | 99久久无码一区人妻 | 欧美日韩在线亚洲综合国产人 | 人人爽人人澡人人高潮 | 午夜免费福利小电影 | 青草视频在线播放 | 亚洲综合在线一区二区三区 | 亚欧洲精品在线视频免费观看 | 精品国产aⅴ无码一区二区 | 麻豆国产人妻欲求不满谁演的 | 亚洲色欲色欲天天天www | 精品少妇爆乳无码av无码专区 | 又粗又大又硬毛片免费看 | 国产精品无码一区二区桃花视频 | 67194成是人免费无码 | 国产人成高清在线视频99最全资源 | 秋霞成人午夜鲁丝一区二区三区 | 久久亚洲日韩精品一区二区三区 | 久久99久久99精品中文字幕 | 曰韩无码二三区中文字幕 | 最新国产麻豆aⅴ精品无码 | 亚洲熟妇色xxxxx欧美老妇y | 性欧美大战久久久久久久 | 麻花豆传媒剧国产免费mv在线 | 国产亚洲精品久久久久久久久动漫 | 男女超爽视频免费播放 | 亚洲 高清 成人 动漫 | 亚洲综合无码久久精品综合 | 久久亚洲a片com人成 | 伦伦影院午夜理论片 | 亚洲午夜久久久影院 | 十八禁视频网站在线观看 | 成人性做爰aaa片免费看 | 中文久久乱码一区二区 | 色综合久久久无码中文字幕 | 99国产精品白浆在线观看免费 | 国内揄拍国内精品少妇国语 | 成 人 网 站国产免费观看 | 欧美乱妇无乱码大黄a片 | 在线亚洲高清揄拍自拍一品区 | 成 人 免费观看网站 | 领导边摸边吃奶边做爽在线观看 | 欧美性猛交xxxx富婆 | 亚洲 激情 小说 另类 欧美 | 欧美国产日韩亚洲中文 | 蜜臀av无码人妻精品 | 亚洲成a人片在线观看无码 | 毛片内射-百度 | 初尝人妻少妇中文字幕 | 波多野结衣乳巨码无在线观看 | 久久综合九色综合97网 | 日本肉体xxxx裸交 | 久久精品视频在线看15 | 十八禁视频网站在线观看 | 久久国产精品_国产精品 | 日日躁夜夜躁狠狠躁 | 双乳奶水饱满少妇呻吟 | 给我免费的视频在线观看 | 国产sm调教视频在线观看 | 欧美大屁股xxxxhd黑色 | 日本精品高清一区二区 | 欧美亚洲日韩国产人成在线播放 | 欧美怡红院免费全部视频 | 男人的天堂2018无码 | 国产99久久精品一区二区 | 国产亚洲人成在线播放 | 午夜无码区在线观看 | 无码帝国www无码专区色综合 | 熟妇人妻激情偷爽文 | 成人片黄网站色大片免费观看 | 亚洲 a v无 码免 费 成 人 a v | 国产熟妇另类久久久久 | 国产在线无码精品电影网 | 成人无码视频在线观看网站 | 好爽又高潮了毛片免费下载 | 特级做a爰片毛片免费69 | 国产精品久久久久无码av色戒 | 国产两女互慰高潮视频在线观看 | 国内精品久久毛片一区二区 | 色综合久久久久综合一本到桃花网 | 日韩精品无码一本二本三本色 | 无码帝国www无码专区色综合 | 国产精品亚洲综合色区韩国 | 国语自产偷拍精品视频偷 | 无码一区二区三区在线观看 | 人人爽人人澡人人人妻 | 亚洲色大成网站www国产 | 综合人妻久久一区二区精品 | 国产精品第一国产精品 | 国产成人无码av一区二区 | 亚洲一区二区三区无码久久 | 国产精品久久久久9999小说 | 国产欧美熟妇另类久久久 | 波多野结衣一区二区三区av免费 | 久久综合给久久狠狠97色 | 国产色精品久久人妻 | 亚洲欧洲无卡二区视頻 | 久久久精品人妻久久影视 | 少妇久久久久久人妻无码 | 免费人成在线观看网站 | 天天拍夜夜添久久精品大 | 久久精品99久久香蕉国产色戒 | 国产舌乚八伦偷品w中 | 亚洲综合无码久久精品综合 | 中文字幕人妻无码一区二区三区 | 精品国产一区二区三区四区在线看 | 亚洲国产成人a精品不卡在线 | 一本色道久久综合狠狠躁 | 天天躁日日躁狠狠躁免费麻豆 | 国产热a欧美热a在线视频 | 奇米影视888欧美在线观看 | 日本一区二区三区免费播放 | 2019nv天堂香蕉在线观看 | 亚洲精品一区二区三区在线观看 | 亚洲热妇无码av在线播放 | 国产精品资源一区二区 | 久久久久久九九精品久 | 中文毛片无遮挡高清免费 | a片免费视频在线观看 | 四虎国产精品一区二区 | 欧美亚洲日韩国产人成在线播放 | 男女下面进入的视频免费午夜 | 亚洲成av人综合在线观看 | 久久亚洲精品成人无码 | 亚洲va欧美va天堂v国产综合 | 国产成人人人97超碰超爽8 | 久久久久免费看成人影片 | 久久久久久久人妻无码中文字幕爆 | 成人试看120秒体验区 | 亚洲国产精品毛片av不卡在线 | 成人片黄网站色大片免费观看 | 国产超碰人人爽人人做人人添 | a国产一区二区免费入口 | 国产精品亚洲lv粉色 | yw尤物av无码国产在线观看 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 久久久久人妻一区精品色欧美 | 一本久道久久综合婷婷五月 | 国产成人一区二区三区在线观看 | 国产一区二区三区精品视频 | 强伦人妻一区二区三区视频18 | 国产sm调教视频在线观看 | 欧美精品无码一区二区三区 | 国产精品高潮呻吟av久久 | 无码人妻av免费一区二区三区 | 欧美成人免费全部网站 | 精品亚洲韩国一区二区三区 | 俄罗斯老熟妇色xxxx | 强伦人妻一区二区三区视频18 | av在线亚洲欧洲日产一区二区 | 99久久精品国产一区二区蜜芽 | 国产亚洲视频中文字幕97精品 | 国产午夜福利亚洲第一 | 99久久久无码国产aaa精品 | 精品国产青草久久久久福利 | 最近的中文字幕在线看视频 | 国产精品久久久久久久影院 | ass日本丰满熟妇pics | 久久久精品456亚洲影院 | 国产精品自产拍在线观看 | 狂野欧美激情性xxxx | 久激情内射婷内射蜜桃人妖 | 久久五月精品中文字幕 | 亚洲阿v天堂在线 | 永久免费观看国产裸体美女 | 少妇性l交大片欧洲热妇乱xxx | 日韩精品无码一区二区中文字幕 | 无遮挡啪啪摇乳动态图 | 中文字幕人成乱码熟女app | 国产亚洲精品久久久闺蜜 | 亚洲精品国产品国语在线观看 | a国产一区二区免费入口 | 少妇愉情理伦片bd | 男女超爽视频免费播放 | 精品一二三区久久aaa片 | 国产精品亚洲lv粉色 | a在线观看免费网站大全 | 欧美一区二区三区 | 欧美精品无码一区二区三区 | 波多野结衣av在线观看 | 澳门永久av免费网站 | 国产网红无码精品视频 | 六月丁香婷婷色狠狠久久 | www一区二区www免费 | 亚洲国产欧美在线成人 | 国产成人精品无码播放 | 国产精华av午夜在线观看 | 婷婷六月久久综合丁香 | 大地资源中文第3页 | 欧美 丝袜 自拍 制服 另类 | 亚洲成a人一区二区三区 | 一区二区传媒有限公司 | 国产av无码专区亚洲a∨毛片 | 国产真人无遮挡作爱免费视频 | 久久天天躁夜夜躁狠狠 | 精品久久久无码人妻字幂 | 中文字幕精品av一区二区五区 | 又大又紧又粉嫩18p少妇 | 玩弄少妇高潮ⅹxxxyw | 久久国语露脸国产精品电影 | 国产手机在线αⅴ片无码观看 | 大肉大捧一进一出好爽视频 | 特黄特色大片免费播放器图片 | 青青久在线视频免费观看 | 99久久亚洲精品无码毛片 | 国产乱人伦av在线无码 | 网友自拍区视频精品 | 好爽又高潮了毛片免费下载 | 婷婷五月综合缴情在线视频 | 露脸叫床粗话东北少妇 | 国产超级va在线观看视频 | 奇米影视888欧美在线观看 | 欧美一区二区三区 | 日本熟妇浓毛 | 欧美人与物videos另类 | 欧美野外疯狂做受xxxx高潮 | 动漫av一区二区在线观看 | 在教室伦流澡到高潮hnp视频 | 在线观看免费人成视频 | 国产熟妇另类久久久久 | 日日橹狠狠爱欧美视频 | 日日鲁鲁鲁夜夜爽爽狠狠 | 两性色午夜免费视频 | 日韩少妇内射免费播放 | 天天爽夜夜爽夜夜爽 | 亚洲人成网站免费播放 | 国产成人无码一二三区视频 | 激情内射日本一区二区三区 | 在线观看欧美一区二区三区 | 国产极品美女高潮无套在线观看 | 亚洲精品国产精品乱码视色 | 亚洲男人av天堂午夜在 | 精品人妻人人做人人爽夜夜爽 | 小sao货水好多真紧h无码视频 | 十八禁视频网站在线观看 | 精品一区二区三区波多野结衣 | 国产特级毛片aaaaaa高潮流水 | 人人妻在人人 | 欧美日韩久久久精品a片 | 天天躁夜夜躁狠狠是什么心态 | 99国产精品白浆在线观看免费 | 欧美肥老太牲交大战 | 成人性做爰aaa片免费看不忠 | 性欧美熟妇videofreesex | 亚洲s码欧洲m码国产av | 天堂无码人妻精品一区二区三区 | 色婷婷综合激情综在线播放 | av无码不卡在线观看免费 | 国产精品自产拍在线观看 | 乌克兰少妇xxxx做受 | 色综合久久中文娱乐网 | 国产精品香蕉在线观看 | 国产无套内射久久久国产 | 亚洲毛片av日韩av无码 | 欧美野外疯狂做受xxxx高潮 | 高清国产亚洲精品自在久久 | 成人性做爰aaa片免费看 | 中文字幕人妻丝袜二区 | 兔费看少妇性l交大片免费 | 久久综合给久久狠狠97色 | 天堂在线观看www | 亚洲熟妇色xxxxx亚洲 | 亚洲aⅴ无码成人网站国产app | 亚洲熟女一区二区三区 | 免费中文字幕日韩欧美 | 亚洲无人区午夜福利码高清完整版 | www国产亚洲精品久久久日本 | 97人妻精品一区二区三区 | 中国女人内谢69xxxx | 国产美女极度色诱视频www | 中文字幕av伊人av无码av | 九一九色国产 | 中文字幕无线码 | 久久久久国色av免费观看性色 | www国产亚洲精品久久久日本 | 亚洲日本va中文字幕 | 久久国产精品_国产精品 | 亚拍精品一区二区三区探花 | 亚洲国产成人av在线观看 | 丝袜人妻一区二区三区 | 大地资源网第二页免费观看 | 成人影院yy111111在线观看 | 国产舌乚八伦偷品w中 | 青春草在线视频免费观看 | 国产精华av午夜在线观看 | a在线亚洲男人的天堂 | 捆绑白丝粉色jk震动捧喷白浆 | 久久人人爽人人爽人人片av高清 | 国产精品久久国产精品99 | av小次郎收藏 | 国产亚洲精品精品国产亚洲综合 | 一个人看的视频www在线 | 久久久久成人片免费观看蜜芽 | 亚洲性无码av中文字幕 | 人人妻在人人 | 内射白嫩少妇超碰 | 国产精品久免费的黄网站 | 国产免费无码一区二区视频 | 无码帝国www无码专区色综合 | 国产精品视频免费播放 | 性欧美videos高清精品 | 国产成人无码一二三区视频 | 久久久中文久久久无码 | 亚洲无人区一区二区三区 | 人妻人人添人妻人人爱 | 国产莉萝无码av在线播放 | 乱人伦人妻中文字幕无码 | 国产香蕉97碰碰久久人人 | 在线欧美精品一区二区三区 | 大胆欧美熟妇xx | 18禁黄网站男男禁片免费观看 | 国产精品美女久久久网av | 精品国精品国产自在久国产87 | 成人性做爰aaa片免费看 | 草草网站影院白丝内射 | 亚洲精品www久久久 | 玩弄少妇高潮ⅹxxxyw | 高清不卡一区二区三区 | 国产三级精品三级男人的天堂 | 久久综合九色综合97网 | 国产熟妇另类久久久久 | 九九热爱视频精品 | 99久久久无码国产精品免费 | 小sao货水好多真紧h无码视频 | 少妇无码av无码专区在线观看 | 美女极度色诱视频国产 | 波多野42部无码喷潮在线 | 无码一区二区三区在线 | 性色欲情网站iwww九文堂 | 丰满肥臀大屁股熟妇激情视频 | 无码午夜成人1000部免费视频 | 人人妻人人澡人人爽欧美一区九九 | 18无码粉嫩小泬无套在线观看 | 免费人成网站视频在线观看 | 无码精品国产va在线观看dvd | 性欧美videos高清精品 | 国产成人亚洲综合无码 | 大肉大捧一进一出视频出来呀 | 99麻豆久久久国产精品免费 | 中文亚洲成a人片在线观看 | 国产精品亚洲lv粉色 | 亚洲春色在线视频 | 免费人成网站视频在线观看 | 亚洲综合无码一区二区三区 | 色综合久久久无码网中文 | 日欧一片内射va在线影院 | 国产免费无码一区二区视频 | 国产亚洲精品久久久久久国模美 | 国产又爽又猛又粗的视频a片 | 99精品国产综合久久久久五月天 | 麻豆国产97在线 | 欧洲 | 午夜时刻免费入口 | 亚洲精品午夜无码电影网 | 国产人妻人伦精品 | 亚洲 欧美 激情 小说 另类 | 伦伦影院午夜理论片 | 亚洲精品一区三区三区在线观看 | 亚洲欧洲日本综合aⅴ在线 | 婷婷五月综合激情中文字幕 | 国产亚洲精品久久久久久 | 亚洲综合无码久久精品综合 | 久久国产精品_国产精品 | 午夜成人1000部免费视频 | 国产深夜福利视频在线 | 国产麻豆精品一区二区三区v视界 | 亚洲色无码一区二区三区 | 国产9 9在线 | 中文 | 国产成人精品视频ⅴa片软件竹菊 | 在线亚洲高清揄拍自拍一品区 | 亚洲爆乳大丰满无码专区 | 伊在人天堂亚洲香蕉精品区 | 欧美日本免费一区二区三区 | 又湿又紧又大又爽a视频国产 | 人妻体内射精一区二区三四 | 麻豆人妻少妇精品无码专区 | 亚洲第一无码av无码专区 | 久久久精品成人免费观看 | 99久久久无码国产精品免费 | 久久aⅴ免费观看 | 国产无遮挡又黄又爽又色 | 波多野结衣av在线观看 | 国产精品久久久久7777 | 精品国产一区二区三区av 性色 | 女高中生第一次破苞av | 日韩精品无码免费一区二区三区 | 欧美国产亚洲日韩在线二区 | 欧美亚洲国产一区二区三区 | 无码精品国产va在线观看dvd | 欧美老人巨大xxxx做受 | 国产网红无码精品视频 | 国产精华av午夜在线观看 | 国产真实夫妇视频 | 无码免费一区二区三区 | 中文无码精品a∨在线观看不卡 | 欧美丰满少妇xxxx性 | 精品亚洲韩国一区二区三区 | 色一情一乱一伦 | 日日天干夜夜狠狠爱 | 中文字幕+乱码+中文字幕一区 | 丰满少妇熟乱xxxxx视频 | 任你躁国产自任一区二区三区 | 久久这里只有精品视频9 | 国产精品欧美成人 | 综合激情五月综合激情五月激情1 | 熟妇女人妻丰满少妇中文字幕 | 日本精品少妇一区二区三区 | 亚洲国产精品美女久久久久 | 人人妻人人澡人人爽人人精品浪潮 | 国产美女极度色诱视频www | 2019午夜福利不卡片在线 | 夜夜影院未满十八勿进 | 亚洲爆乳大丰满无码专区 | 无码人妻少妇伦在线电影 | 成人无码影片精品久久久 | 国精品人妻无码一区二区三区蜜柚 | 国产精品人妻一区二区三区四 | 国产九九九九九九九a片 | 伊人久久大香线蕉午夜 | 国产精华av午夜在线观看 | 亚洲精品成人福利网站 | 性啪啪chinese东北女人 | 亚洲国产av精品一区二区蜜芽 | 天天爽夜夜爽夜夜爽 | 国产一区二区三区日韩精品 | 小sao货水好多真紧h无码视频 | 亚洲中文字幕在线无码一区二区 | 欧美变态另类xxxx | 久久婷婷五月综合色国产香蕉 | 夜精品a片一区二区三区无码白浆 | 永久黄网站色视频免费直播 | 九九在线中文字幕无码 | 少妇被黑人到高潮喷出白浆 | 日韩欧美中文字幕在线三区 | 亚洲最大成人网站 | 午夜精品一区二区三区在线观看 | 久久久久免费看成人影片 | 国产人妖乱国产精品人妖 | 亲嘴扒胸摸屁股激烈网站 | 无码人妻丰满熟妇区毛片18 | 欧美亚洲国产一区二区三区 | 动漫av一区二区在线观看 | 在线播放亚洲第一字幕 | 日本精品人妻无码免费大全 | 国产亚洲精品久久久久久久 | 精品午夜福利在线观看 | 野外少妇愉情中文字幕 | 青青青爽视频在线观看 | 国产亚洲精品久久久久久 | 中文亚洲成a人片在线观看 | 国产在线精品一区二区三区直播 | 天下第一社区视频www日本 | 色诱久久久久综合网ywww | 色狠狠av一区二区三区 | 俺去俺来也www色官网 | 国产人成高清在线视频99最全资源 | 免费乱码人妻系列无码专区 | 日日鲁鲁鲁夜夜爽爽狠狠 | 丝袜人妻一区二区三区 | 日日鲁鲁鲁夜夜爽爽狠狠 | 国产九九九九九九九a片 | 巨爆乳无码视频在线观看 | 一本色道婷婷久久欧美 | 亚洲精品久久久久avwww潮水 | 日本饥渴人妻欲求不满 | 中文字幕无码av波多野吉衣 | 国产绳艺sm调教室论坛 | 亚洲精品成a人在线观看 | 乌克兰少妇xxxx做受 | 久久亚洲中文字幕无码 | 亚洲成av人影院在线观看 | 国产精品人妻一区二区三区四 | 中文字幕色婷婷在线视频 | 性史性农村dvd毛片 | 欧美喷潮久久久xxxxx | 久久久久国色av免费观看性色 | 精品午夜福利在线观看 | 少妇久久久久久人妻无码 | 欧美刺激性大交 | 欧美 亚洲 国产 另类 | 国产午夜精品一区二区三区嫩草 | 国产精品99久久精品爆乳 | www国产精品内射老师 | 天堂在线观看www | 97久久精品无码一区二区 | 人妻互换免费中文字幕 | 狠狠色色综合网站 | 精品国产aⅴ无码一区二区 | 国产亚洲精品久久久久久国模美 | 无码国产乱人伦偷精品视频 | 精品国偷自产在线 | 色偷偷人人澡人人爽人人模 | 日产国产精品亚洲系列 | 久久精品无码一区二区三区 | 久久97精品久久久久久久不卡 | 在线播放无码字幕亚洲 | 亚洲日韩av一区二区三区四区 | 九月婷婷人人澡人人添人人爽 | 好男人www社区 | 纯爱无遮挡h肉动漫在线播放 | 久久久久久久人妻无码中文字幕爆 | 一个人看的www免费视频在线观看 | 午夜男女很黄的视频 | 国产精品久久久久久久影院 | 国产真实夫妇视频 | 国产9 9在线 | 中文 | 丰腴饱满的极品熟妇 | a片在线免费观看 | 377p欧洲日本亚洲大胆 | 亚洲va欧美va天堂v国产综合 | 精品欧洲av无码一区二区三区 | 在线观看国产一区二区三区 | 精品国产一区av天美传媒 | 在线看片无码永久免费视频 | 99久久精品午夜一区二区 | 久久精品中文字幕大胸 | 国产无套粉嫩白浆在线 | 国产精品无码永久免费888 | 亚洲精品久久久久中文第一幕 | 国产精品二区一区二区aⅴ污介绍 | 国产精品久免费的黄网站 | 国产莉萝无码av在线播放 | 综合激情五月综合激情五月激情1 | 欧美日韩久久久精品a片 | 国产亚洲精品久久久久久大师 | 丰腴饱满的极品熟妇 | 久久国产36精品色熟妇 | 无码精品人妻一区二区三区av | 国产精品igao视频网 | 国产成人av免费观看 | 窝窝午夜理论片影院 | 爆乳一区二区三区无码 | 色欲av亚洲一区无码少妇 | 国精品人妻无码一区二区三区蜜柚 | 中文字幕无码热在线视频 | 国产午夜手机精彩视频 | 奇米影视888欧美在线观看 | 色一情一乱一伦 | 国产一区二区三区影院 | 久久99精品久久久久久动态图 | 狠狠色噜噜狠狠狠7777奇米 | 九九热爱视频精品 | 啦啦啦www在线观看免费视频 | 网友自拍区视频精品 | 亚洲小说图区综合在线 | 亚洲无人区午夜福利码高清完整版 | aⅴ亚洲 日韩 色 图网站 播放 | 色偷偷人人澡人人爽人人模 | 伊在人天堂亚洲香蕉精品区 | 国产真人无遮挡作爱免费视频 | 无码人妻黑人中文字幕 | 国产精品美女久久久 | 国产av人人夜夜澡人人爽麻豆 | 婷婷六月久久综合丁香 | 人妻少妇精品无码专区动漫 | 午夜福利试看120秒体验区 | 中文精品久久久久人妻不卡 | 亚拍精品一区二区三区探花 | 风流少妇按摩来高潮 | aa片在线观看视频在线播放 | 秋霞特色aa大片 | 性色欲情网站iwww九文堂 | 久久 国产 尿 小便 嘘嘘 | 久久综合给久久狠狠97色 | 国产精品久免费的黄网站 | 国产又粗又硬又大爽黄老大爷视 | 午夜时刻免费入口 | 亚洲精品久久久久avwww潮水 | 骚片av蜜桃精品一区 | 男女猛烈xx00免费视频试看 | 人人爽人人爽人人片av亚洲 | 国产熟妇另类久久久久 | аⅴ资源天堂资源库在线 | 久在线观看福利视频 | 亚洲精品无码国产 | 国产成人综合在线女婷五月99播放 | 老司机亚洲精品影院无码 | 成人无码视频免费播放 | 久久99精品国产麻豆蜜芽 | 久久久精品成人免费观看 | 丝袜足控一区二区三区 | 精品久久8x国产免费观看 | 国产综合色产在线精品 | 真人与拘做受免费视频一 | 久久人人爽人人爽人人片ⅴ | 亚洲最大成人网站 | 无码国模国产在线观看 | 亚洲乱码国产乱码精品精 | 免费人成在线视频无码 | 特黄特色大片免费播放器图片 | 未满成年国产在线观看 | 国产成人精品一区二区在线小狼 | 国产精品久久久久久亚洲毛片 | 中文字幕人妻无码一夲道 | 国产欧美精品一区二区三区 | av人摸人人人澡人人超碰下载 | 曰韩无码二三区中文字幕 | 精品乱子伦一区二区三区 | 97久久超碰中文字幕 | 国产成人无码午夜视频在线观看 | 国产xxx69麻豆国语对白 | 双乳奶水饱满少妇呻吟 | 国产99久久精品一区二区 | 中文字幕亚洲情99在线 | 人人澡人摸人人添 | 精品国产青草久久久久福利 | 中文精品无码中文字幕无码专区 | 精品少妇爆乳无码av无码专区 | 亚洲日本va午夜在线电影 | 四虎国产精品一区二区 | 国产无套粉嫩白浆在线 | 国产性生交xxxxx无码 | 欧美性黑人极品hd | 欧美丰满老熟妇xxxxx性 | 久久久久久国产精品无码下载 | 国产乱子伦视频在线播放 | 欧美人与善在线com | 精品久久久无码中文字幕 | 十八禁视频网站在线观看 | 亚洲人成影院在线无码按摩店 | 欧美人与牲动交xxxx | 午夜熟女插插xx免费视频 | 欧美人与善在线com | 国产成人久久精品流白浆 | 国产人妻人伦精品 | 精品偷拍一区二区三区在线看 | 无套内射视频囯产 | 欧美国产亚洲日韩在线二区 | 1000部啪啪未满十八勿入下载 | 成人免费无码大片a毛片 | 国内精品人妻无码久久久影院 | 精品久久久无码中文字幕 | 色狠狠av一区二区三区 | 亚欧洲精品在线视频免费观看 | 久久99精品国产麻豆 | 玩弄少妇高潮ⅹxxxyw | 欧美日韩久久久精品a片 | 东京热一精品无码av | 老头边吃奶边弄进去呻吟 | 999久久久国产精品消防器材 | 亚洲日韩一区二区 | 国产人妻精品一区二区三区不卡 | 黑人巨大精品欧美黑寡妇 | 精品久久久中文字幕人妻 | 啦啦啦www在线观看免费视频 | 久久久精品欧美一区二区免费 | 国产国产精品人在线视 | 无码人妻久久一区二区三区不卡 | 国产精品视频免费播放 | 欧美黑人巨大xxxxx | 亚洲区小说区激情区图片区 | 国产av剧情md精品麻豆 | 免费观看激色视频网站 | 欧美亚洲国产一区二区三区 | 欧美人与禽zoz0性伦交 | 亚洲精品鲁一鲁一区二区三区 | 妺妺窝人体色www婷婷 | 又粗又大又硬又长又爽 | 国内少妇偷人精品视频 | 国产在线精品一区二区高清不卡 | 中文精品无码中文字幕无码专区 | 精品一区二区三区无码免费视频 | 久久久精品456亚洲影院 | 红桃av一区二区三区在线无码av | 国产精品无码一区二区三区不卡 | 永久免费观看国产裸体美女 | 欧洲精品码一区二区三区免费看 | 男人的天堂av网站 | 欧美老人巨大xxxx做受 | 精品国偷自产在线视频 | 两性色午夜免费视频 | 日本精品人妻无码77777 天堂一区人妻无码 | 人人爽人人澡人人高潮 | 无码av免费一区二区三区试看 | 少妇被粗大的猛进出69影院 | 久久午夜无码鲁丝片秋霞 | 熟妇人妻中文av无码 | 亚洲欧美精品伊人久久 | 免费男性肉肉影院 | 中文字幕无码免费久久9一区9 | 在线播放无码字幕亚洲 | 欧美老妇交乱视频在线观看 | 狠狠色噜噜狠狠狠7777奇米 | 亚洲高清偷拍一区二区三区 | 欧美 日韩 亚洲 在线 | 亚洲中文字幕无码中字 | 久久久久久a亚洲欧洲av冫 | 国产精华av午夜在线观看 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 日韩av无码中文无码电影 | 亚洲爆乳大丰满无码专区 | 国产高清不卡无码视频 | 国产精品久久久久影院嫩草 | 国产一区二区三区影院 | 无码av岛国片在线播放 | 亚洲精品欧美二区三区中文字幕 | 亚洲日韩一区二区 | 日产国产精品亚洲系列 | 亚洲熟悉妇女xxx妇女av | 久久综合给久久狠狠97色 | 荫蒂添的好舒服视频囗交 | 国产xxx69麻豆国语对白 | 国产综合在线观看 | 三级4级全黄60分钟 | 丰满诱人的人妻3 | 成人欧美一区二区三区黑人免费 | 无码国产激情在线观看 | 亚洲 a v无 码免 费 成 人 a v | 奇米影视7777久久精品人人爽 | 曰本女人与公拘交酡免费视频 | 四虎国产精品免费久久 | 亚洲色欲色欲欲www在线 | 亚洲综合在线一区二区三区 | 亚洲中文字幕va福利 | 1000部啪啪未满十八勿入下载 | 国产精品亚洲一区二区三区喷水 | 两性色午夜视频免费播放 | 色综合久久88色综合天天 | 色综合视频一区二区三区 | 人人澡人人妻人人爽人人蜜桃 | 无码人妻丰满熟妇区五十路百度 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 在教室伦流澡到高潮hnp视频 | 99麻豆久久久国产精品免费 | 亚洲色欲色欲天天天www | 西西人体www44rt大胆高清 | 国产偷抇久久精品a片69 | 在线播放亚洲第一字幕 | 图片区 小说区 区 亚洲五月 | 97无码免费人妻超级碰碰夜夜 | 久青草影院在线观看国产 | 人妻少妇被猛烈进入中文字幕 | 日韩精品成人一区二区三区 | 国产av无码专区亚洲a∨毛片 | 国产亚洲欧美日韩亚洲中文色 | 久久久亚洲欧洲日产国码αv | 波多野结衣av一区二区全免费观看 | 亚洲狠狠色丁香婷婷综合 | 成人无码精品一区二区三区 | 国产精品人妻一区二区三区四 | 久久综合九色综合97网 | 日日摸天天摸爽爽狠狠97 | 亚洲 日韩 欧美 成人 在线观看 | 欧美老熟妇乱xxxxx | av无码久久久久不卡免费网站 | 天堂亚洲2017在线观看 | 天天燥日日燥 | 一区二区传媒有限公司 | 欧美熟妇另类久久久久久不卡 | 色欲综合久久中文字幕网 | 精品国产乱码久久久久乱码 | 欧美午夜特黄aaaaaa片 | 精品乱子伦一区二区三区 | 少妇愉情理伦片bd | 亚洲无人区午夜福利码高清完整版 | 天天综合网天天综合色 | 成人免费视频视频在线观看 免费 | 国产精品久久福利网站 | 成 人 网 站国产免费观看 | 真人与拘做受免费视频一 | 国产尤物精品视频 | 亚洲码国产精品高潮在线 | 亚洲欧美精品aaaaaa片 | 欧美性猛交内射兽交老熟妇 | 亚洲人成影院在线无码按摩店 | 九九综合va免费看 | 日本熟妇浓毛 | 成 人 网 站国产免费观看 | 亚洲国产av精品一区二区蜜芽 | 中文字幕乱码亚洲无线三区 | 中文字幕无码av波多野吉衣 | 性色欲情网站iwww九文堂 | 漂亮人妻洗澡被公强 日日躁 | 国产激情无码一区二区app | 国产免费观看黄av片 | 亚洲中文无码av永久不收费 | а天堂中文在线官网 | 国产精品a成v人在线播放 | 大肉大捧一进一出视频出来呀 | 天堂亚洲2017在线观看 | 免费观看又污又黄的网站 | 成人无码精品1区2区3区免费看 | 特黄特色大片免费播放器图片 | 亚洲人成网站色7799 | 国产激情无码一区二区 | 亚洲欧美综合区丁香五月小说 | 国产精品久久精品三级 | 在线看片无码永久免费视频 | 秋霞成人午夜鲁丝一区二区三区 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲毛片av日韩av无码 | 伊人久久大香线蕉av一区二区 | 中文毛片无遮挡高清免费 | 九九久久精品国产免费看小说 | 日日碰狠狠躁久久躁蜜桃 | 在线播放亚洲第一字幕 | 国产在线精品一区二区高清不卡 | 99麻豆久久久国产精品免费 | 亚洲精品国产第一综合99久久 | 性啪啪chinese东北女人 | 日韩精品一区二区av在线 | 精品久久久无码中文字幕 | 正在播放老肥熟妇露脸 | 久久综合香蕉国产蜜臀av | 亚欧洲精品在线视频免费观看 | 午夜精品久久久内射近拍高清 | 久久久精品欧美一区二区免费 | 午夜成人1000部免费视频 | 无码帝国www无码专区色综合 | 一区二区三区高清视频一 | 精品国产av色一区二区深夜久久 | 国产内射爽爽大片视频社区在线 | 欧美老熟妇乱xxxxx | 中文无码精品a∨在线观看不卡 | 日韩精品久久久肉伦网站 | 亚洲一区二区三区国产精华液 | 欧美野外疯狂做受xxxx高潮 | 18禁黄网站男男禁片免费观看 | 国产亚洲精品精品国产亚洲综合 | 国产69精品久久久久app下载 | 无码福利日韩神码福利片 | 久久综合九色综合欧美狠狠 | 天天做天天爱天天爽综合网 | 在线观看国产午夜福利片 | 国产精品人妻一区二区三区四 | www国产精品内射老师 | 日韩精品久久久肉伦网站 | 无码国内精品人妻少妇 | 国语自产偷拍精品视频偷 | 黑人玩弄人妻中文在线 | 精品成在人线av无码免费看 | 久久无码中文字幕免费影院蜜桃 | 成人一在线视频日韩国产 | www成人国产高清内射 | 婷婷丁香五月天综合东京热 | 久久精品国产99精品亚洲 | 国产精品怡红院永久免费 | 无套内射视频囯产 | 人妻体内射精一区二区三四 | 久久精品国产大片免费观看 | 日韩人妻无码中文字幕视频 | 久久婷婷五月综合色国产香蕉 | 亚洲中文字幕乱码av波多ji | 欧美丰满熟妇xxxx性ppx人交 | 国产精品a成v人在线播放 | 亚洲乱码中文字幕在线 | 伊人久久大香线蕉av一区二区 | 夜夜夜高潮夜夜爽夜夜爰爰 | 天堂а√在线地址中文在线 | 精品国产福利一区二区 | 无码人妻丰满熟妇区毛片18 | 亚洲国产高清在线观看视频 | 天天摸天天透天天添 | 亚洲熟妇自偷自拍另类 | 亚洲成色www久久网站 | 天海翼激烈高潮到腰振不止 | 在线看片无码永久免费视频 | 日日摸日日碰夜夜爽av | 老熟女重囗味hdxx69 | 纯爱无遮挡h肉动漫在线播放 | 精品一区二区三区无码免费视频 | 亚洲а∨天堂久久精品2021 | √8天堂资源地址中文在线 | 久久综合狠狠综合久久综合88 | 亚洲精品国偷拍自产在线观看蜜桃 | 欧美老妇交乱视频在线观看 | 亚洲 激情 小说 另类 欧美 | 亚洲精品鲁一鲁一区二区三区 | 夜精品a片一区二区三区无码白浆 | 国产精品无码一区二区桃花视频 | 日韩人妻无码一区二区三区久久99 | 国产一精品一av一免费 | 77777熟女视频在线观看 а天堂中文在线官网 | 国产精品久久久av久久久 | 亚洲成av人片天堂网无码】 | 成人毛片一区二区 | 伦伦影院午夜理论片 | 日本熟妇人妻xxxxx人hd | 成人免费视频在线观看 | 男女下面进入的视频免费午夜 | 一本无码人妻在中文字幕免费 | 玩弄少妇高潮ⅹxxxyw | 亚洲日韩av一区二区三区中文 | 亚洲乱码国产乱码精品精 | 欧美激情一区二区三区成人 | 在线视频网站www色 | 色欲人妻aaaaaaa无码 | 精品无人区无码乱码毛片国产 | 国产精品高潮呻吟av久久 | 无码人妻av免费一区二区三区 | 99精品无人区乱码1区2区3区 | 99久久99久久免费精品蜜桃 | 一本加勒比波多野结衣 | 蜜臀av无码人妻精品 | 久久久婷婷五月亚洲97号色 | 欧美丰满少妇xxxx性 | 中文字幕乱码亚洲无线三区 | 奇米影视888欧美在线观看 | 亚洲乱码日产精品bd | 精品国产乱码久久久久乱码 |