3_使用seurat sct方法中的reference based处理大数据超过100000个细胞 science advance
生活随笔
收集整理的這篇文章主要介紹了
3_使用seurat sct方法中的reference based处理大数据超过100000个细胞 science advance
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
3
Single-Cell Transcriptomic Analysis of Human Lung Provides Insights
into the Pathobiology of Pulmonary Fibrosis
_使用seurat sct方法中的reference based處理大數(shù)據(jù)超過100000個細胞
library(Seurat) library(hdf5r) library(dplyr)getwd()path="G:/silicosis/geo/GSE122960_ScRNA_ of Human Lung During Pulmonary Fibrosis II/GSE122960_RAW/filter_.h5/" setwd(path)# H5文件讀入和轉(zhuǎn)化為Seurat對象 # https://nbisweden.github.io/workshop-scRNAseq/labs/compiled/seurat/seurat_01_qc.htmlfs=list.files(pattern = '.h5') fs sceList = lapply(fs, function(x){# x=fs[1]print(x)a=Read10X_h5( x )a[1:4,1:4] library(stringr)(p=str_split(x,'_',simplify = T)[,2])sce <- CreateSeuratObject( a ,project = p )sce }) setwd('../') getwd()names(sceList) length(sceList) sceList[[1]]for (i in 1:length(sceList) ) {sceList[[i]]=SCTransform(sceList[[i]],verbose = FALSE) }sceList.features=SelectIntegrationFeatures(object.list = sceList,nfeatures = 3000) sceList=PrepSCTIntegration(object.list = sceList,anchor.features = sceList.features)reference_dataset=c(sceList[[14]],sceList[[15]])sceList.anchors=FindIntegrationAnchors(object.list = sceList, anchor.features = sceList.features,reference = reference_dataset) sceList.integrated=IntegrateData(anchorset = sceList.anchors,normalization.method = "SCT") sceList.integrated=sceList.integrated %>%RunPCA(verbose=FALSE) %>%RunUMAP(dims=1:30)總結(jié)
以上是生活随笔為你收集整理的3_使用seurat sct方法中的reference based处理大数据超过100000个细胞 science advance的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Java架构师视频+授课资料
- 下一篇: 帝国cms php mip提交,帝国cm