Kriging模型
Kriging回歸
given set s=[s1,s2,…,sm]T\mathbf{s}=[s_1,s_2,\ldots,s_m]^Ts=[s1?,s2?,…,sm?]T, corresponding response g=[g1,g2,…,gm]T\mathbf{g}=[g_1,g_2,\ldots,g_m]^Tg=[g1?,g2?,…,gm?]T,
predictor:
g^(t)=fT(t)β+Z(t)\hat{g}(t)=f^T(t)\beta+Z(t) g^?(t)=fT(t)β+Z(t)
f(t)f(t)f(t) is a regression function, the stochastic process Z(t)Z(t)Z(t) is assumed to have zero mean and covariance is :
E[Z(W)Z(Q)]=σ2R(θ;W,Q)E[Z(\mathbf{W})Z(\mathbf{Q})]=\sigma^2R(\theta;\mathbf{W},\mathbf{Q}) E[Z(W)Z(Q)]=σ2R(θ;W,Q)
RRR is the correlation function defined by parameter θ\thetaθ, the most widely used is gaussian correalaton function:
R(θ;W,Q)=∏j=1n[?θ(Qj?Wi)2]R(\theta;\mathbf{W},\mathbf{Q})=\prod_{j=1}^n\left[-\theta(Q_j-W_i)^2\right] R(θ;W,Q)=j=1∏n?[?θ(Qj??Wi?)2]
the response G(u)G(u)G(u) of a given test point u\mathbf{u}u obey a gaussian distribution, denote as
G(u)~N(μG(u),σG2(u))G(\mathbf{u})\sim N\left(\mu_G(\mathbf{u}),\sigma_G^2(\mathbf{u})\right) G(u)~N(μG?(u),σG2?(u))
the mean and standard devision given as :
μG(u)=f(u)Tβ?+r(u)TR?1(g?Fβ?)\mu_G(\mathbf{u})=f(\mathbf{u})^T\beta^*+r(\mathbf{u})^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) μG?(u)=f(u)Tβ?+r(u)TR?1(g?Fβ?)
σG2(u)=σ2[1+vT(FTRTF)?1v?r(u)TR?1r(u)]\sigma_G^2(\mathbf{u})=\sigma^2\left[1+\mathbf{v}^T(\mathbf{F}^T\mathbf{R}^T\mathbf{F})^{-1}\mathbf{v}-r(\mathbf{u})^T\mathbf{R}^{-1}r(\mathbf{u})\right] σG2?(u)=σ2[1+vT(FTRTF)?1v?r(u)TR?1r(u)]
where
v=FTR?1r(u)?f(u)\mathbf{v}=\mathbf{F}^T\mathbf{R}^{-1}r(\mathbf{u})-f(\mathbf{u}) v=FTR?1r(u)?f(u)
σ2=1m(Y?Fβ?)TR?1(g?Fβ?)\sigma^2=\frac{1}{m}(\mathbf{Y}-\mathbf{F}\beta^*)^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) σ2=m1?(Y?Fβ?)TR?1(g?Fβ?)
β?=(FTR?1F)?1FTR?1g\beta^*=(\mathbf{F}^T\mathbf{R}^{-1}\mathbf{F})^{-1}\mathbf{F}^T\mathbf{R}^{-1}\mathbf{g} β?=(FTR?1F)?1FTR?1g
r(u)r(\mathbf{u})r(u) is correlation vector between S\mathbf{S}S and u\mathbf{u}u
r(u)=[R(θ;s1,u),…,R(θ;sm,u)]Tr(\mathbf{u})=[R(\theta;s_1,\mathbf{u}),\ldots,R(\theta;s_m,\mathbf{u})]^T r(u)=[R(θ;s1?,u),…,R(θ;sm?,u)]T
FFF is the regression matrix
F=[f(s1),…,f(sm)]TF=[f(s_1),\ldots,f(s_m)]^T F=[f(s1?),…,f(sm?)]T
the optimal coefficients θ?\theta^*θ? of the correlation function solves
θ?=min?θ{∣R∣1mσ2}\theta^*=\min_{\theta}\{|\mathbf{R}|^{\frac{1}{m}}\sigma^2\} θ?=θmin?{∣R∣m1?σ2}
總結
- 上一篇: 稀疏数组和队列
- 下一篇: 夯实数据库根科技,提升企业数智化转型的“