Apache Spark1.1.0部署与开发环境搭建 - Mark Lin
?????? Spark是Apache公司推出的一種基于Hadoop Distributed File System(HDFS)的并行計算架構。與MapReduce不同,Spark并不局限于編寫map和reduce兩個方法,其提供了更為強大的內存計算(in-memory computing)模型,使得用戶可以通過編程將數據讀取到集群的內存當中,并且可以方便用戶快速地重復查詢,非常適合用于實現機器學習算法。本文將介紹Apache Spark1.1.0的部署與開發環境搭建。
????? 原文鏈接:http://www.tuicool.com/articles/2e2q2y
??????
0. 準備
出于學習目的,本文將Spark部署在虛擬機中,虛擬機選擇 VMware WorkStation 。在虛擬機中,需要安裝以下軟件:
- Ubuntu 14.04.1 LTS 64位桌面版
- hadoop-2.4.0.tar.gz
- jdk-7u67-linux-x64.tar.gz ?
- scala-2.10.4.tgz
- spark-1.1.0-bin-hadoop2.4.tgz
Spark的開發環境,本文選擇Windows7平臺,IDE選擇IntelliJ IDEA。在Windows中,需要安裝以下軟件:
- IntelliJ IDEA?13.1.4?Community Edition
- apache-maven-3.2.3-bin.zip (安裝過程比較簡單,請讀者自行安裝)
1. 安裝JDK
解壓jdk安裝包到/usr/lib目錄:
1 sudo cp jdk-7u67-linux-x64.gz /usr/lib 2 cd /usr/lib 3 sudo tar -xvzf jdk-7u67-linux-x64.gz 4 sudo gedit /etc/profile在/etc/profile文件的末尾添加環境變量:
1 export JAVA_HOME=/usr/lib/jdk1.7.0_67 2 export JRE_HOME=/usr/lib/jdk1.7.0_67/jre 3 export PATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH 4 export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH保存并更新/etc/profile:
1 source /etc/profile測試jdk是否安裝成功:
1 java -version(注釋:
(1)在此過程中 Win條件下配置cygwin:使用TXT編輯器 導致一些列的 -r 空格問題,真是扯!
(2)在此過程中 使用反人類的腦殘VIM:神奇的模式編輯器,真是扯!
(3)出現扯淡的 BASH:/ 這是一個目錄問題,不過不影響操作步驟!
)
2.? 安裝及配置SSH
sudo apt-get update sudo apt-get install openssh-server生成并添加密鑰:
ssh-keygen -t rsa -P "" 顯示:Generating public/private rsa key pair. Enter file in which to save the key (/home/wshchn/.ssh/id_rsa): 按空格:一不小心按了Ctrl+c顯示:Created directory '/home/wshchn/.ssh'. Your identification has been saved in /home/wshchn/.ssh/id_rsa. Your public key has been saved in /home/wshchn/.ssh/id_rsa.pub. The key fingerprint is: 6a:18:65:35:e2:44:be:28:fd:ee:67:f5:61:b9:f4:1a wshchn@wshchn-Aspire-4741 The key's randomart image is: +--[ RSA 2048]----+ |???? .+ o??????? | |???? + o .?????? | |????? =????????? | |?? . + .???????? | |? . + . S??? .?? | |?? . + .? . =??? | |??? . +? . +E+?? | |???? o? o?? o..? | |???? .oo??? ..?? | +-----------------+cd /home/hduser/.ssh ? cd /home/wshchn/.sshssh登錄:
ssh localhost 顯示: The authenticity of host 'localhost (127.0.0.1)' can't be established. ECDSA key fingerprint is df:27:6e:61:8a:3a:5d:5b:3b:58:26:89:1f:d1:5a:32. Are you sure you want to continue connecting (yes/no)? ? ? ? ? yes顯示: Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts. Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)* Documentation:? https://help.ubuntu.com/The programs included with the Ubuntu system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.Last login: Mon Jan 19 10:26:53 -bash: /: 是一個目錄(注釋:此步驟米有疏漏)
3. 安裝hadoop2.4.0
采用偽分布模式安裝hadoop2.4.0。解壓hadoop2.4.0到/usr/local目錄:
sudo cp hadoop-2.4.0.tar.gz /usr/local/ sudo tar -xzvf hadoop-2.4.0.tar.gz在/etc/profile文件的末尾添加環境變量:
export HADOOP_HOME=/usr/local/hadoop-2.4.0 export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"保存并更新/etc/profile:
source /etc/profile
在位于/usr/local/hadoop-2.4.0/etc/hadoop的hadoop-env.sh和yarn-env.sh文件中修改jdk路徑:
cd /usr/local/hadoop-2.4.0/etc/hadoop sudo gedit hadoop-env.sh sudo gedit yarn-evn.shhadoop-env.sh:
(查看java路徑:linux:
whereis java
which java (java執行路徑)
?echo $JAVA_HOME
echo $PATH
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64
)yarn-env.sh:
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64
修改/etc/core-site.xml:
vim /etc/hadoop/core-site.xml在<configuration></configuration>之間添加:
1 <property> 2 <name>fs.default.name</name> 3 <value>hdfs://localhost:9000</value> 4 </property> 5 6 <property> 7 <name>hadoop.tmp.dir</name> 8 <value>/app/hadoop/tmp</value> 9 </property>
修改hdfs-site.xml:
vim /etc/hadoop/hdfs-site.xml在<configuration></configuration>之間添加:
<property> <name>dfs.namenode.name.dir</name> <value>/app/hadoop/dfs/nn</value> </property> <property> <name>dfs.namenode.data.dir</name> <value>/app/hadoop/dfs/dn</value> </property><property><name>dfs.replication</name><value>1</value></property>
修改yarn-site.xml:
vim /etc/hadoop/yarn-site.xml在<configuration></configuration>之間添加:
<property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>
復制并重命名mapred-site.xml.template為mapred-site.xml:
sudo cp mapred-site.xml.template mapred-site.xml cp /opt/hadoop-2.2.0/etc/hadoop/mapred-site.xml.template /opt/hadoop-2.2.0/etc/hadoop/mapred-site.xml sudo gedit mapred-site.xml vim /opt/hadoop-2.2.0/etc/hadoop/mapred-site.xml在<configuration></configuration>之間添加:
<property><name>mapreduce.jobtracker.address </name> ?<value>hdfs://localhost:9001</value></property>
在啟動hadoop之前,為防止可能出現無法寫入log的問題,記得為/app目錄設置權限:
sudo mkdir /app mkdir /opt/hadoop-2.2.0/app/ sudo chmod -R hduser:hduser /app chmod -R 770 wishchin:wishchin /opt/hadoop-2.2.0/app/
格式化hadoop:
hadoop namenode -format顯示:
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
15/01/19 16:52:55 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:?? host = wshchn-Aspire-4741/127.0.1.1
STARTUP_MSG:?? args = [-format]
STARTUP_MSG:?? version = 2.2.0
STARTUP_MSG:?? classpath = /opt/h
.................
..................
....................
15/01/19 16:52:58 INFO namenode.FSImage: Image file /app/hadoop/dfs/nn/current/fsimage.ckpt_0000000000000000000 of size 196 bytes saved in 0 seconds.
15/01/19 16:52:58 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
15/01/19 16:52:58 INFO util.ExitUtil: Exiting with status 0
15/01/19 16:52:58 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at wshchn-Aspire-4741/127.0.1.1
************************************************************/
啟動hdfs和yarn。在開發Spark時,僅需要啟動hdfs:
sbin/start-dfs.sh ? ? /opt/hadoop-2.2.0/sbin/start-dfs.sh 顯示: 15/01/19 16:56:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Starting namenodes on [localhost] root@localhost's : ? ?sbin/start-yarn.sh在瀏覽器中打開地址可以查看hdfs狀態信息:
4. 安裝scala
1 sudo cp /home/hduser/Download/scala-2.9.3.tgz /usr/local 2 sudo tar -xvzf scala-2.9.3.tgz在/etc/profile文件的末尾添加環境變量:
export SCALA_HOME=/usr/local/scala-2.9.3 export PATH=$SCALA_HOME/bin:$PATH保存并更新/etc/profile:
source /etc/profile測試scala是否安裝成功:
1 scala -version5. 安裝Spark
sudo cp spark-1.1.0-bin-hadoop2.4.tgz /usr/local sudo tar -xvzf spark-1.1.0-bin-hadoop2.4.tgz在/etc/profile文件的末尾添加環境變量:
export SPARK_HOME=/usr/local/spark-1.1.0-bin-hadoop2.4 export PATH=$SPARK_HOME/bin:$PATH保存并更新/etc/profile:
source /etc/profile復制并重命名spark-env.sh.template為spark-env.sh:
sudo cp spark-env.sh.template spark-env.sh sudo gedit spark-env.sh在spark-env.sh中添加:
export SCALA_HOME=/usr/local/scala-2.9.3 export JAVA_HOME=/usr/lib/jdk1.7.0_67 export SPARK_MASTER_IP=localhost export SPARK_WORKER_MEMORY=1000m啟動Spark:
cd /usr/local/spark-1.1.0-bin-hadoop2.4 sbin/start-all.sh測試Spark是否安裝成功:
cd /usr/local/spark-1.1.0-bin-hadoop2.4 bin/run-example SparkPi
6. 搭建Spark開發環境
本文開發Spark的IDE推薦IntelliJ IDEA,當然也可以選擇Eclipse。在使用IntelliJ IDEA之前,需要安裝scala的插件。點擊Configure:
點擊Plugins:
點擊Browse repositories...:
在搜索框內輸入scala,選擇Scala插件進行安裝。由于已經安裝了這個插件,下圖沒有顯示安裝選項:
安裝完成后,IntelliJ IDEA會要求重啟。重啟后,點擊Create New Project:
Project SDK選擇jdk安裝目錄,建議開發環境中的jdk版本與Spark集群上的jdk版本保持一致。點擊左側的Maven,勾選Create from archetype,選擇org.scala-tools.archetypes:scala-archetype-simple:
點擊Next后,可根據需求自行填寫GroupId,ArtifactId和Version:
點擊Next后,如果本機沒有安裝maven會報錯,請保證之前已經安裝maven:
點擊Next后,輸入文件名,完成New Project的最后一步:
點擊Finish后,maven會自動生成pom.xml和下載依賴包。我們需要修改pom.xml中scala的版本:
1 <properties> 2 <scala.version>2.10.4</scala.version> 3 </properties>在<dependencies></dependencies>之間添加配置:
1 <!-- Spark --> 2 <dependency> 3 <groupId>org.apache.spark</groupId> 4 <artifactId>spark-core_2.10</artifactId> 5 <version>1.1.0</version> 6 </dependency> 7 8 <!-- HDFS --> 9 <dependency> 10 <groupId>org.apache.hadoop</groupId> 11 <artifactId>hadoop-client</artifactId> 12 <version>2.4.0</version> 13 </dependency>Spark的開發環境至此搭建完成。One more thing,wordcount的示例代碼:
1 package mark.lin //別忘了修改package 2 3 import org.apache.spark.{SparkConf, SparkContext} 4 import org.apache.spark.SparkContext._ 5 6 import scala.collection.mutable.ListBuffer 7 8 /** 9 * Hello world! 10 * 11 */ 12 object App{ 13 def main(args: Array[String]) { 14 if (args.length != 1) { 15 println("Usage: java -jar code.jar dependencies.jar") 16 System.exit(0) 17 } 18 val jars = ListBuffer[String]() 19 args(0).split(",").map(jars += _) 20 21 val conf = new SparkConf() 22 conf.setMaster("spark://localhost:7077").setAppName("wordcount").set("spark.executor.memory", "128m").setJars(jars) 23 24 val sc = new SparkContext(conf) 25 26 val file = sc.textFile("hdfs://localhost:9000/hduser/wordcount/input/input.csv") 27 val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_) 28 println(count) 29 count.saveAsTextFile("hdfs://localhost:9000/hduser/wordcount/output/") 30 sc.stop() 31 } 32 }7. 編譯&運行
使用maven編譯源代碼。點擊左下角,點擊右側package,點擊綠色三角形,開始編譯。
在target目錄下,可以看到maven生成的jar包。其中,hellworld-1.0-SNAPSHOT-executable.jar是我們需要放到Spark集群上運行的。
在運行jar包之前,保證hadoop和Spark處于運行狀態:
將jar包拷貝到Ubuntu的本地文件系統上,輸入以下命令運行jar包:
1 java -jar helloworld-1.0-SNAPSHOT-executable.jar helloworld-1.0-SNAPSHOT-executable.jar在瀏覽器中輸入地址http://localhost:8080/可以查看任務運行情況:
8. Q&A
Q: 在Spark集群上運行jar包,拋出異?!癗o FileSystem for scheme: hdfs”:
A:這是由于hadoop-common-2.4.0.jar中的core-default.xml缺少hfds的相關配置屬性引起的異常。在maven倉庫目錄下找到hadoop-common-2.4.0.jar,以rar的打開方式打開:
將core-default.xml拖出,并添加配置:
1 <property> 2 <name>fs.hdfs.impl</name> 3 <value>org.apache.hadoop.hdfs.DistributedFileSystem</value> 4 <description>The FileSystem for hdfs: uris.</description> 5 </property>再將修改后的core-default.xml替換hadoop-common-2.4.0.jar中的core-default.xml,重新編譯生成jar包。
Q: 在Spark集群上運行jar包,拋出異?!癋ailed on local exception”:
A:檢查你的代碼,一般是由于hdfs路徑錯誤引起。
Q: 在Spark集群上運行jar包,重復提示“Connecting to master spark”:
A:檢查你的代碼,一般是由于setMaster路徑錯誤引起。
Q: 在Spark集群上運行jar包,重復提示“Initial job has not accepted any resource; check your cluster UI to ensure that workers are registered and have sufficient memory”:
A:檢查你的代碼,一般是由于內存設置不合理引起。此外,還需要檢查Spark安裝目錄下的conf/spark-env.sh對worker內存的設置。
9. 參考資料
[1] Spark Documentation from Apache. [ Link ]
10. 鳴謝
感謝limyao( http://limyao.com/ )為本文提供的幫助。
總結
以上是生活随笔為你收集整理的Apache Spark1.1.0部署与开发环境搭建 - Mark Lin的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 微信分身版和微信一样吗
- 下一篇: 人人通空间如何上课(人人都是产品经理)