2020-10-22标准正态分布表(scipy.stats)
生活随笔
收集整理的這篇文章主要介紹了
2020-10-22标准正态分布表(scipy.stats)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
0. 標準正態分布表與常用值
-
Z-score 是非標準正態分布標準化后的 x即?z = x ? μ σ z = \frac{x-\mu}{\sigma}z=σx?μ?
-
表頭的橫向表示小數點后第二位,表頭的縱向則為整數部分以及小數點后第一位;兩者聯合作為完整的 x,坐標軸的橫軸
-
表中的值為圖中紅色區域的面積,也即 cdf,連續分布的累積概率函數,記為?Φ ( x ) \Phi(x)Φ(x)
-
cdf 的逆,記為?Φ ? 1 ( x ) \Phi^{-1}(x)Φ?1(x),如?Φ ? 1 ( 3 / 4 ) \Phi^{-1}(3/4)Φ?1(3/4),表示 x 取何值時,陰影部分的面積為 0.75,查表可知,x 介于 0.67 和 0.68 之間;
>> from scipy.stats import norm >> norm.ppf(3/4) 0.6744897501960817
?
1. cdf 與 ppf(分位函數)
from scipy.stats import norm?
覆蓋的概率范圍:
>> norm.cdf(1) - norm.cdf(-1) 0.6826894921370859 >> norm.cdf(2) - norm.cdf(-2) 0.9544997361036416 >> norm.cdf(3) - norm.cdf(-3) 0.9973002039367398Φ ( x ) \Phi(x)Φ(x)?為 累積概率密度函數,也即 cdf:
>> from scipy.stats import norm >> norm.cdf(0) 0.5?
Φ ? 1 ( x ) \Phi^{-1}(x)Φ?1(x),通過 norm(x) 進行計算:
>> from scipy.stats import norm # Q3 分位點; >> norm.ppf(3/4) 0.6744897501960817 # Q1 分位點 >> norm.ppf(1/4) -0.6744897501960817標準正態分布表
總結
以上是生活随笔為你收集整理的2020-10-22标准正态分布表(scipy.stats)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 自动驾驶(五十八)---------自动
- 下一篇: python如何实现数据可视化,如何用p