数学三考试大纲
數學三考試大綱[考試科目]
微積分、線性代數、概率論與數理統計
微積分
一、函數、極限、連續
考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性反函數、復合函數、隱函數、分段函數基本初等函數的性質及圖形初等函數數列極限與函數極限的概念函數的左極限和右極限無窮小和無窮大的概念及關系無窮小的基本性質及階的比較極限四則運算兩個重要極限函數連續與間斷的概念初等函數的連續性閉區間上連續函數的性質
考試要求
1.理解函數的概念,掌握函數的表示法。深入了解函數的有界性、單調性、周期性和奇偶性。
2.理解復合函數、反函數、隱函數和分段函數的概念。
3.掌握基本初等函數的性質及其圖形,理解初等函數的概念。
4.會建立簡單應用問題中的函數關系式。
5.了解數列極限和函數極限(包括左、右極限)的概念。
6.了解無窮小的概念和基本性質,掌握無窮小的階的比較方法。了解無窮大的概念及其與無窮小的關系。
7.了解極限的性質與極限存在的兩個準則(單調有界數列有極限、夾逼定理),掌握極限四則運算法則,會應用兩個重要極限。
8.理解函數連續性的概念(含左連續與右連續)。
9,了解連續函數的性質和初等函數的連續性,了解閉區間上連續函數的性質(有界性、最大值與最小值定理和介值定理)及其簡單應用。
二、一元函數微分學
考試內容
導數的概念函數的可導性與連續性之間的關系導數的四則運算基本初等函數的導數復合函數、反函數和隱函數的導數高階導數微分的概念和運算法則微分中值定理及其應用洛必達(L'HoSpital)法則函數單調性函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)。
2.掌握基本初等函數的導數公式、導數的四則運算法則及復合函數的求導法則;掌握反函數與隱函數求導法以及對數求導法。
3.了解高階導數的概念,會求二階、三階導數及較簡單函數的N階導數。
4.了解微分的概念,導數與微分之間的關系,以及一階微分形式的不變性:掌握微分法。
5.理解羅爾(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的條件和結論,掌握這三個定理的簡單應用。
6.會用洛必達法則求極限。
7.掌握函數單調性的判別方法及其應用,掌握極值、最大值和最小值的求法(含解較簡單的應用題)。
8.掌握曲線凹凸性和拐點的判別方法,以及曲線的漸近線的求法。
9.掌握函數作圖的基本步驟和方法,會作某些簡單函數的圖形
三、一元函數積分學
考試內容
原函數與不定積分的概念不定積分的基本性質基本積分
公式不定積分的換元積分法和分部積分法定積分的概念和基本性質積分中值定理變上限定積分定義的函數及其導數牛頓一萊布尼茨(Newton一Leibniz)公式定積分的換元積分法和分部積分法廣義積分的概念和計算定積分的應用
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式;掌握計算不定積分的換元積分法和分部積分法。2.了解定積分的概念和基本性質。掌握牛頓一萊布尼茨公式,以及定積分的換元積分法和分部積分法。會求變上限定積分的導數。
3.會利用定積分計算平面圖形的面積和旋轉體的體積,會利用定積分求解一些簡單的經濟應用題。
4.了解廣義積分收斂與發散的概念,掌握計算廣義積分的基本方法,了解廣義積分的收斂與發散的條件。
四、多元函數微積分學
考試內容
多元函數的概念二元函數的幾何意義二元函數的極限與連續性有界閉區域上二元連續函數的性質(最大值和最小值定理)偏導數的概念與計算多元復合函數的求導法隱函數求導法高階偏導數全微分多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算無界區域上簡單二重積分的計算
考試要求
1.了解多元函數的概念,了解二元函數的表示法與幾何意義
2.了解二元函數的極限與連續的直觀意義。
3.了解多元函數偏導數與全微分的概念,掌握求復合函數偏導數和全微分的方法,會用隱函數的求導法則。
4.了解多元函數極值和條件極值的概念/掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件。會求二元函數的極值。會用拉格朗日乘數法求條件極值。會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題。
5.了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法。會計算無界區域上的較簡單的二重積分。
五、無窮級數
考試內容常數項級數收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與戶級數的收斂性正項級數收斂性的判別任意項級數的絕對收斂與條件收斂交錯級數萊布尼茨定理冪級數的概念收斂半徑、收斂區問(指開區間)和收斂域冪級數的和函數冪級數在收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式
考試要求
1.了解級數的收斂與發散、收斂級數的和等概念。
2.掌握級數收斂的必要條件及收斂級數的基本性質。掌握幾何級數及P級數的收斂與發散的條件。掌握正項級數的比較判別法和達朗貝爾(比值)判別法。
3.了解任意項級數絕對收斂與條件收斂的概念,掌握交錯級數的萊布尼茨判別法,掌握絕對收斂與條件收斂的判別方法。
4.會求冪級數的收斂半徑和收斂域。
5.了解冪級數在收斂區問內的基本性質(和函數的連續性、逐項微分和逐項積分),會求一些簡單冪級數的和函數。
6.掌握(略)等冪級數展開式,并會利用這些展開式將一些簡單函數間接展成冪級數。
六、常微分方程與羨分方程
考試內容
微分方程的概念微分方程的解、通解、初始條件和特解變量i可分離的微分方程齊次方程一階線性方程二階常系數齊次線性方程及簡單的非齊次線性方程差分與差分方程的概念差分方程的通解與特解一階常系數線性差分方程微分方程與差分方程的簡單應用
考試要求
1.了解微分方程的階、通解、初始條件和特解等概念。
2.掌握變量可分離的方程、齊次方程和一階線性方程的求解方法。
3.會解二階常系數齊次線性方程和自由項為多項式、指數函數、正弦函數、余弦函數,以及它們的和與乘積的二階常系數非齊次線性微分方程。
4.了解差分與差分方程及其通解與特解等概念。
5.掌握一階常系數線性差分方程的求解方法。
6.會應用微分方程和差分方程求解一些簡單的經濟應用問題。
線性代數
一、行列式
考試內容,行列式的概念和基本性質行列式按行(列)展開定理克萊姆(Crammer)法則
考試要求
1.理解門階行列式的概念。
2.掌握行列式的性質,會應用行列式的性質和行列式按行(列)展開定理計算行列式。
3.會用克萊姆法則解線性方程組。
二、矩陣
考試內容
矩陣的概念單位矩陣、對角矩陣、數量矩陣、三角矩陣、對稱矩陣和正交矩陣矩陣的和數與矩陣的積矩陣與矩陣的積矩陣的轉置逆矩陣的概念和性質矩陣的伴隨矩陣矩陣的初等變換初等矩陣分塊矩陣及其運算矩陣的秩
考試要求
1.理解矩陣的概念,了解幾種特殊矩陣的定義和性質。
2.掌握矩陣的加法、數乘、乘法,以及它們的運算法則;掌握矩陣轉置的性質;掌握方陣乘積的行列式的性質。
3.理解逆矩陣的概念、掌握逆矩陣的性質。會用伴隨矩陣求矩陣的逆。
4.了解矩陣的初等變換和初等矩陣的概念;理解矩陣的秩的概念,會用初等變換求矩陣的逆和秩。
5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則。
三、向量
考試內容
向量的概念向量的和數與向量的積向量的線性組合與線性表示向量組線性相關與線性元關的概念、性質和判別法向量組的極大線性元關組向量組的秩
考試要求
1.了解向量的概念,掌握向量的加法和數乘運算法則。
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。
3.理解向量組的極大無關組的概念,掌握求向量組的極大無關組的方法。
4.理解向量組的秩的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系,會求向量組的秩。&nbs ...
總結
- 上一篇: 移动互联网四个特点:移动性、私密性、局限
- 下一篇: 异地登陆验证的简单实现