CS224W-图神经网络 笔记5.1:Spectral Clustering - 谱聚类基础知识点
CS224W-圖神經(jīng)網(wǎng)絡(luò) 筆記5.1:Spectral Clustering - 譜聚類基礎(chǔ)知識點(diǎn)
本文總結(jié)之日CS224W Winter 2021只更新到了第四節(jié),所以下文會參考2021年課程的PPT并結(jié)合2019年秋季課程進(jìn)行總結(jié)以求內(nèi)容完整
課程主頁:CS224W: Machine Learning with Graphs
視頻鏈接:【斯坦福】CS224W:圖機(jī)器學(xué)習(xí)( 中英字幕 | 2019秋)
文章目錄
- CS224W-圖神經(jīng)網(wǎng)絡(luò) 筆記5.1:Spectral Clustering - 譜聚類基礎(chǔ)知識點(diǎn)
- 1 引言
- 1.1 線性代數(shù)矩陣知識
- 1.2 圖的矩陣表示
- 2 一些概念
- 2.1 什么是譜(Spectral)
- 譜圖理論(Spectral graph partitioning)
- 2.2 圖拉普拉斯矩陣的由來
- 2.3 拉普拉斯矩陣和拉普拉斯算子之間關(guān)系?
- 2.4 拉普拉斯算子的物理含義?
- 3 圖劃分
- 3.1 圖劃分與社區(qū)發(fā)現(xiàn)之間聯(lián)系與區(qū)別
- 聯(lián)系
- 區(qū)別
- 4 參考文章
1 引言
**本節(jié)從矩陣計(jì)算和線性代數(shù)角度來分析圖。**而相關(guān)矩陣包括:鄰接矩陣和圖拉普拉斯矩陣。在進(jìn)入具體譜聚類算法介紹前,有必要先熟悉下相關(guān)矩陣、特征值和特征向量等相關(guān)知識。
1.1 線性代數(shù)矩陣知識
1.2 圖的矩陣表示
先復(fù)習(xí)下圖的矩陣表示形式。對于無向圖 G = ( V , E ) G=(V, E) G=(V,E),與之相關(guān)的矩陣表示有如下三種:
其中拉普拉斯矩陣的性質(zhì),是由其實(shí)對稱舉證性質(zhì)決定的。其中有一點(diǎn),關(guān)于特征值大于等于0(半正定)的證明如下:
來源:
http://www.sofasofa.io/forum_main_post.php?postid=1004484
2 一些概念
下面,補(bǔ)充些關(guān)于譜圖相關(guān)的概念。
2.1 什么是譜(Spectral)
譜的定義:譜就是指矩陣特征值的集合。該名稱來自光譜,指一些純事物的集合,就像將矩陣分解成為特征值與特征向量。定義譜半徑為該方陣最大的特征值。
在譜圖里面實(shí)際上矩陣指拉普拉斯矩陣 ,對它的特征值和特征向量的分解稱為譜分解.(特征分解,對角化,譜分解是一個概念)
譜圖理論(Spectral graph partitioning)
圖譜論是指分析圖G的矩陣表示的“頻譜”。頻譜是指由其對應(yīng)的特征值的大小升序排序的一組圖的特征向量:
- https://zhuanlan.zhihu.com/p/81502804
2.2 圖拉普拉斯矩陣的由來
整個譜圖理論都是圍繞著圖的拉普拉斯矩陣為核心進(jìn)行展開的,那么為什么將其定義為D-W呢?它其實(shí)是拉普拉斯算子在圖上的推廣,它是離散的拉普拉斯算子。
其第 i 行其實(shí)是第 i 個節(jié)點(diǎn)在產(chǎn)生擾動時對其他節(jié)點(diǎn)產(chǎn)生的收益累積。
具體可以看下面的鏈接里的公式推導(dǎo):
- https://zhuanlan.zhihu.com/p/84649941
2.3 拉普拉斯矩陣和拉普拉斯算子之間關(guān)系?
拉普拉斯矩陣是離散的拉普拉斯算子。具體分析參考下文
- https://zhuanlan.zhihu.com/p/85287578
2.4 拉普拉斯算子的物理含義?
根據(jù)定義,函數(shù)的拉普拉斯算子 ? 2 f \nabla^2f ?2f又可以寫成 ? ? ? f \nabla \cdot \nabla f ???f ,其被定義為函數(shù) 梯度的散度。
拉普拉斯算子實(shí)際上衡量了在空間中的每一點(diǎn)處,該函數(shù)梯度(向量場)是傾向于增加還是減少.
- https://zhuanlan.zhihu.com/p/67336297
3 圖劃分
3.1 圖劃分與社區(qū)發(fā)現(xiàn)之間聯(lián)系與區(qū)別
聯(lián)系
圖劃分(graph partitioning)與社區(qū)發(fā)現(xiàn)(community detection):二者都是根據(jù)網(wǎng)絡(luò)中的邊的連接模式,把網(wǎng)絡(luò)中的頂點(diǎn)劃分成群組、簇或者社區(qū)。使得同一群組間節(jié)點(diǎn)緊密連接,而不同群組間只有少數(shù)的邊。
區(qū)別
- 圖劃分得到的群組的數(shù)量基本是確定的,而社區(qū)發(fā)現(xiàn)是不確定的。
- 另外,從目的角度看,前者的目的通常是將網(wǎng)絡(luò)劃分為更多更小的塊,為了劃分而劃分。沒有好的劃分,也要盡量在不好的劃分中選擇一種。而社區(qū)發(fā)現(xiàn)則是為了了解網(wǎng)絡(luò)結(jié)構(gòu),沒有符合條件的劃分可以不劃分。
這小節(jié),算是鋪墊。具體圖劃分以及譜聚類放到下一小結(jié),再做討論。
4 參考文章
總結(jié)
以上是生活随笔為你收集整理的CS224W-图神经网络 笔记5.1:Spectral Clustering - 谱聚类基础知识点的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 翡翠等级
- 下一篇: 如何下载python模块_python安