LRU缓存实现(Java)
LRU是Least Recently Used 的縮寫,翻譯過來就是“最近最少使用”,LRU緩存就是使用這種原理實現,簡單的說就是緩存一定量的數據,當超過設定的閾值時就把一些過期的數據刪除掉,比如我們緩存10000條數據,當數據小于10000時可以隨意添加,當超過10000時就需要把新的數據添加進來,同時要把過期數據刪除,以確保我們最大緩存10000條,那怎么確定刪除哪條過期數據呢,采用LRU算法實現的話就是將最老的數據刪掉,廢話不多說,下面來說下Java版的LRU緩存實現
Java里面實現LRU緩存通常有兩種選擇,一種是使用LinkedHashMap,一種是自己設計數據結構,使用鏈表+HashMap
LRU Cache的LinkedHashMap實現
LinkedHashMap自身已經實現了順序存儲,默認情況下是按照元素的添加順序存儲,也可以啟用按照訪問順序存儲,即最近讀取的數據放在最前面,最早讀取的數據放在最后面,然后它還有一個判斷是否刪除最老數據的方法,默認是返回false,即不刪除數據,我們使用LinkedHashMap實現LRU緩存的方法就是對LinkedHashMap實現簡單的擴展,擴展方式有兩種,一種是inheritance,一種是delegation,具體使用什么方式看個人喜好
//LinkedHashMap的一個構造函數,當參數accessOrder為true時,即會按照訪問順序排序,最近訪問的放在最前,最早訪問的放在后面 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor);this.accessOrder = accessOrder; }//LinkedHashMap自帶的判斷是否刪除最老的元素方法,默認返回false,即不刪除老數據 //我們要做的就是重寫這個方法,當滿足一定條件時刪除老數據 protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {return false; }LRU緩存LinkedHashMap(inheritance)實現
采用inheritance方式實現比較簡單,而且實現了Map接口,在多線程環境使用時可以使用?Collections.synchronizedMap()方法實現線程安全操作
package cn.lzrabbit.structure.lru;import java.util.LinkedHashMap; import java.util.Map;/*** Created by liuzhao on 14-5-15.*/ public class LRUCache2<K, V> extends LinkedHashMap<K, V> {private final int MAX_CACHE_SIZE;public LRUCache2(int cacheSize) {super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);MAX_CACHE_SIZE = cacheSize;}@Overrideprotected boolean removeEldestEntry(Map.Entry eldest) {return size() > MAX_CACHE_SIZE;}@Overridepublic String toString() {StringBuilder sb = new StringBuilder();for (Map.Entry<K, V> entry : entrySet()) {sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));}return sb.toString();} }?這樣算是比較標準的實現吧,實際使用中這樣寫還是有些繁瑣,更實用的方法時像下面這樣寫,省去了單獨見一個類的麻煩
final int cacheSize = 100; Map<String, String> map = new LinkedHashMap<String, String>((int) Math.ceil(cacheSize / 0.75f) + 1, 0.75f, true) {@Overrideprotected boolean removeEldestEntry(Map.Entry<String, String> eldest) {return size() > cacheSize;} };?
LRU緩存LinkedHashMap(delegation)實現
delegation方式實現更加優雅一些,但是由于沒有實現Map接口,所以線程同步就需要自己搞定了
package cn.lzrabbit.structure.lru;import java.util.LinkedHashMap; import java.util.Map; import java.util.Set;/*** Created by liuzhao on 14-5-13.*/ public class LRUCache3<K, V> {private final int MAX_CACHE_SIZE;private final float DEFAULT_LOAD_FACTOR = 0.75f;LinkedHashMap<K, V> map;public LRUCache3(int cacheSize) {MAX_CACHE_SIZE = cacheSize;//根據cacheSize和加載因子計算hashmap的capactiy,+1確保當達到cacheSize上限時不會觸發hashmap的擴容,int capacity = (int) Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTOR) + 1;map = new LinkedHashMap(capacity, DEFAULT_LOAD_FACTOR, true) {@Overrideprotected boolean removeEldestEntry(Map.Entry eldest) {return size() > MAX_CACHE_SIZE;}};}public synchronized void put(K key, V value) {map.put(key, value);}public synchronized V get(K key) {return map.get(key);}public synchronized void remove(K key) {map.remove(key);}public synchronized Set<Map.Entry<K, V>> getAll() {return map.entrySet();}public synchronized int size() {return map.size();}public synchronized void clear() {map.clear();}@Overridepublic String toString() {StringBuilder sb = new StringBuilder();for (Map.Entry entry : map.entrySet()) {sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));}return sb.toString();} }?LRU Cache的鏈表+HashMap實現
?注:此實現為非線程安全,若在多線程環境下使用需要在相關方法上添加synchronized以實現線程安全操作
package cn.lzrabbit.structure.lru;import java.util.HashMap;/*** Created by liuzhao on 14-5-12.*/ public class LRUCache1<K, V> {private final int MAX_CACHE_SIZE;private Entry first;private Entry last;private HashMap<K, Entry<K, V>> hashMap;public LRUCache1(int cacheSize) {MAX_CACHE_SIZE = cacheSize;hashMap = new HashMap<K, Entry<K, V>>();}public void put(K key, V value) {Entry entry = getEntry(key);if (entry == null) {if (hashMap.size() >= MAX_CACHE_SIZE) {hashMap.remove(last.key);removeLast();}entry = new Entry();entry.key = key;}entry.value = value;moveToFirst(entry);hashMap.put(key, entry);}public V get(K key) {Entry<K, V> entry = getEntry(key);if (entry == null) return null;moveToFirst(entry);return entry.value;}public void remove(K key) {Entry entry = getEntry(key);if (entry != null) {if (entry.pre != null) entry.pre.next = entry.next;if (entry.next != null) entry.next.pre = entry.pre;if (entry == first) first = entry.next;if (entry == last) last = entry.pre;}hashMap.remove(key);}private void moveToFirst(Entry entry) {if (entry == first) return;if (entry.pre != null) entry.pre.next = entry.next;if (entry.next != null) entry.next.pre = entry.pre;if (entry == last) last = last.pre;if (first == null || last == null) {first = last = entry;return;}entry.next = first;first.pre = entry;first = entry;entry.pre = null;}private void removeLast() {if (last != null) {last = last.pre;if (last == null) first = null;else last.next = null;}}private Entry<K, V> getEntry(K key) {return hashMap.get(key);}@Overridepublic String toString() {StringBuilder sb = new StringBuilder();Entry entry = first;while (entry != null) {sb.append(String.format("%s:%s ", entry.key, entry.value));entry = entry.next;}return sb.toString();}class Entry<K, V> {public Entry pre;public Entry next;public K key;public V value;} }LinkedHashMap的FIFO實現
FIFO是First Input First Output的縮寫,也就是常說的先入先出,默認情況下LinkedHashMap就是按照添加順序保存,我們只需重寫下removeEldestEntry方法即可輕松實現一個FIFO緩存,簡化版的實現代碼如下
final int cacheSize = 5; LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() {@Overrideprotected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) {return size() > cacheSize;} };調用示例
測試代碼
?View Code運行結果
?View Code總結
以上是生活随笔為你收集整理的LRU缓存实现(Java)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: LRU算法四种实现方式介绍
- 下一篇: java 四则运算 栈的实现