java 图的邻接矩阵表示,深度优先遍历,广度优先遍历
生活随笔
收集整理的這篇文章主要介紹了
java 图的邻接矩阵表示,深度优先遍历,广度优先遍历
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
轉載:http://blog.csdn.net/yxmmao/article/details/51586540
1 . 創建圖的鄰接矩陣數據結構
public class MGraph {/*圖的鄰接矩陣表示*/int vexs; //圖中結點數目char data[]; //存放結點數據int [][]weight; //存放邊public MGraph(int ve){vexs=ve;data=new char[ve];weight=new int[ve][ve];} }- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
2 . 創建圖的鄰接矩陣,顯示鄰接矩陣,實現圖的深度遍歷
import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue;public class GraphMetrix {/*圖的鄰接矩陣表示,各中操作*//*創建圖的鄰接矩陣*/public void CreateGraph(MGraph graph,int vexs,char data[],int [][]weight){int i,j;for(i=0;i<vexs;i++){graph.data[i]=data[i];for(j=0;j<vexs;j++){graph.weight[i][j]=weight[i][j];}}}/*顯示圖的鄰接矩陣*/public void ShowGraph(MGraph graph){int vexs=graph.vexs;int [][]weight=graph.weight;int i,j;for(i=0;i<vexs;i++){System.out.print(graph.data[i]+":");for(j=0;j<vexs;j++){System.out.print(weight[i][j]+" ");}System.out.println();}}/*獲取當前頂點K的第一個鄰接頂點位置*/public int GetFirst(MGraph graph,int k){int i;if(k<0||k>graph.vexs-1){System.out.println("參數k值超出范圍");return -1;}for(i=0;i<graph.vexs;i++){if(graph.weight[k][i]==1)return i;}return -1;}/*獲取當前頂點K的第t個鄰接頂點下一個鄰接頂點的位置*/public int GetNext(MGraph graph,int k,int t){int i;if(k<0||k>graph.vexs-1||t<0||t>graph.vexs-1){System.out.println("參數k或t值超出范圍");return -1;}for(i=t+1;i<graph.vexs;i++){if(graph.weight[k][i]==1)return i;}return -1;}/*遞歸方式深度優先遍歷圖的鄰接矩陣*/public void DFSVGraph(MGraph graph,int k,int visited[]){/*graph為圖的鄰接矩陣表示,k為起始頂點,visited[]為訪問過標記數組*/int u; //k的鄰接頂點System.out.print(graph.data[k]+", ");visited[k]=1;//表示頂點k被訪問過u=GetFirst(graph,k);//獲取k的第一個鄰接頂點uwhile(u!=-1){if(visited[u]==0){ //如果u未被訪問過,則遞歸訪問u的鄰接點DFSVGraph(graph,u,visited);}u=GetNext(graph,k,u);//獲取k的下一個鄰接頂點}}/*廣度優先遍歷圖的鄰接矩陣*/public void BFSVGraph(MGraph graph,int k,int visited[]){/*graph為圖的鄰接矩陣表示,k為起始頂點,visited[]為訪問過標記數組*/Queue <Integer>queue=new LinkedList <Integer>();int u;queue.add(k);//頂點k進入隊列visited[k]=1;//頂點k標記被訪問過while(!queue.isEmpty()){u=queue.remove();//取出隊列頂元素System.out.print(graph.data[u]+", ");int v=GetFirst(graph,u);//獲取u的第一個鄰接頂點v while(v!=-1){if(visited[v]==0){ //如果v未被訪問過,則遞歸訪問v的鄰接點queue.add(v);visited[v]=1;//頂點v標記被訪問過}v=GetNext(graph,u,v);//獲取u的下一個鄰接頂點} }}public static void main(String args[]){char []data=new char[]{'A','B','C','D','E'};int vexs=data.length;int visited[]=new int [vexs];/*定義訪問標記數組*/int [][]weight=new int[][]{{0,1,0,0,1},{1,0,1,1,0},{0,1,0,0,0},{0,1,0,0,1},{1,0,0,1,0}};for(int i=0;i<vexs;i++){/*初始化訪問標記數組*/visited[i]=0;}MGraph graph=new MGraph(vexs);GraphMetrix gam=new GraphMetrix();gam.CreateGraph(graph,vexs,data,weight);gam.ShowGraph(graph);//gam.DFSVGraph(graph, 0, visited);gam.BFSVGraph(graph, 0, visited);}}- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
總結
以上是生活随笔為你收集整理的java 图的邻接矩阵表示,深度优先遍历,广度优先遍历的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 图的存储以及深度优先以及广度优先遍历
- 下一篇: 动态规划---实现输出最大公共子序列的长