He initialization
生活随笔
收集整理的這篇文章主要介紹了
He initialization
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Initialization:
一個好的初始化可以:
Speed up the convergence of gradient descent
Increase the odds(勝算,幾率) of gradient descent converging to a lower training (and generalization) error
初始化的shape:
數據因當是(樣本內容,樣本數量)
第一個參數W的設置因當是(樣本數量,本層神經元數)
Wx的設置為(輸入層數,本層)
He initialization
def initialize_parameters_he(layers_dims):"""Arguments:layer_dims -- python array (list) containing the size of each layer.Returns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])b1 -- bias vector of shape (layers_dims[1], 1)...WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])bL -- bias vector of shape (layers_dims[L], 1)"""np.random.seed(3)parameters = {}L = len(layers_dims) - 1 # integer representing the number of layersfor l in range(1, L + 1):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt( 2 / layers_dims[l - 1])parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))### END CODE HERE ###return parameters總結
以上是生活随笔為你收集整理的He initialization的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 计算机中文期刊abc类,计算机类国际期刊
- 下一篇: 包载信使mRNA的多西环素纳米脂质体|雷